Cyclic adenosine monophosphate critically modulates cardiac GLP-1 receptor’s anti-inflammatory effects

Diz-Chaves Y, Mastoor Z, Spuch C, González-Matías LC, Mallo F. Anti-inflammatory effects of GLP-1 receptor activation in the brain in neurodegenerative diseases. Int J Mol Sci. 2022;23(17):9583.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klen J, Dolžan V. Glucagon-like peptide-1 receptor agonists in the management of type 2 diabetes mellitus and obesity: the impact of pharmacological properties and genetic factors. Int J Mol Sci. 2022;23(7):3451.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ussher JR, Drucker DJ. Glucagon-like peptide 1 receptor agonists: cardiovascular benefits and mechanisms of action. Nat Rev Cardiol. 2023;20(7):463–74.

Article  CAS  PubMed  Google Scholar 

Pandey S, Mangmool S, Parichatikanond W. Multifaceted roles of GLP-1 and its analogs: a review on molecular mechanisms with a cardiotherapeutic perspective. Pharmaceuticals (Basel). 2023;16(6):836.

Article  CAS  PubMed  Google Scholar 

Bendotti G, Montefusco L, Lunati ME, Usuelli V, Pastore I, Lazzaroni E, Assi E, Seelam AJ, El Essawy B, Jang J, Loretelli C, D’Addio F, Berra C, Ben Nasr M, Zuccotti G, Fiorina P. The anti-inflammatory and immunological properties of GLP-1 receptor agonists. Pharmacol Res. 2022;182: 106320.

Article  CAS  PubMed  Google Scholar 

Lee YS, Jun HS. Anti-inflammatory effects of GLP-1-based therapies beyond glucose control. Mediators Inflamm. 2016;2016:3094642.

Article  PubMed  PubMed Central  Google Scholar 

Graaf Cd, Donnelly D, Wootten D, Lau J, Sexton PM, Miller LJ, Ahn JM, Liao J, Fletcher MM, Yang D, Brown AJ, Zhou C, Deng J, Wang MW. Glucagon-like peptide-1 and its class B G protein-coupled receptors: a long march to therapeutic successes. Pharmacol Rev. 2016;68(4):954–1013.

Article  PubMed  PubMed Central  Google Scholar 

Wang R, Wang N, Han Y, Xu J, Xu Z. Dulaglutide alleviates LPS-induced injury in cardiomyocytes. ACS Omega. 2021;6(12):8271–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nuamnaichati N, Mangmool S, Chattipakorn N, Parichatikanond W. Stimulation of GLP-1 receptor inhibits methylglyoxal-induced mitochondrial dysfunctions in H9c2 cardiomyoblasts: potential role of Epac/PI3K/Akt pathway. Front Pharmacol. 2020;29(11):805.

Article  Google Scholar 

Lu K, Chang G, Ye L, Zhang P, Li Y, Zhang D. Protective effects of extendin-4 on hypoxia/reoxygenation-induced injury in H9c2 cells. Mol Med Rep. 2015;12(2):3007–16.

Article  CAS  PubMed  Google Scholar 

Zhu Q, Luo Y, Wen Y, Wang D, Li J, Fan Z. Semaglutide inhibits ischemia/reperfusion-induced cardiomyocyte apoptosis through activating PKG/PKCε/ERK1/2 pathway. Biochem Biophys Res Commun. 2023;5(647):1–8.

Google Scholar 

Cui X, Liang H, Hao C, Jing X. Liraglutide preconditioning attenuates myocardial ischemia/ reperfusion injury via homer1 activation. Aging (Albany NY). 2021;13(5):6625–33.

Article  CAS  PubMed  Google Scholar 

Wu XM, Ou QY, Zhao W, Liu J, Zhang H. The GLP-1 analogue liraglutide protects cardiomyocytes from high glucose-induced apoptosis by activating the Epac-1/Akt pathway. Exp Clin Endocrinol Diabetes. 2014;122(10):608–14.

Article  CAS  PubMed  Google Scholar 

Ding W, Chang WG, Guo XC, Liu Y, Xiao DD, Ding D, Wang JX, Zhang XJ. Exenatide protects against cardiac dysfunction by attenuating oxidative stress in the diabetic mouse heart. Front Endocrinol (Lausanne). 2019;5(10):202.

Article  Google Scholar 

Chang G, Liu J, Qin S, Jiang Y, Zhang P, Yu H, Lu K, Zhang N, Cao L, Wang Y, Li Y, Zhang D. Cardioprotection by exenatide: a novel mechanism via improving mitochondrial function involving the GLP-1 receptor/cAMP/PKA pathway. Int J Mol Med. 2018;41(3):1693–703.

CAS  PubMed  Google Scholar 

Papasergi-Scott MM, Pérez-Hernández G, Batebi H, Gao Y, Eskici G, Seven AB, Panova O, Hilger D, Casiraghi M, He F, Maul L, Gmeiner P, Kobilka BK, Hildebrand PW, Skiniotis G. Time-resolved cryo-EM of G-protein activation by a GPCR. Nature. 2024;629(8014):1182–91.

Article  CAS  PubMed  Google Scholar 

Willard FS, Sloop KW. Physiology and emerging biochemistry of the glucagon-like peptide-1 receptor. Exp Diabetes Res. 2012;2012: 470851.

Article  PubMed  PubMed Central  Google Scholar 

Tavares LP, Negreiros-Lima GL, Lima KM, Silva PMR, Pinho V, Teixeira MM, Sousa LP. Blame the signaling: role of cAMP for the resolution of inflammation. Pharmacol Res. 2020;159:105030.

Article  CAS  PubMed  Google Scholar 

Crowley EL, Gooderham MJ. Phosphodiesterase-4 inhibition in the management of psoriasis. Pharmaceutics. 2023;16(1):23.

Article  PubMed  PubMed Central  Google Scholar 

Violi F, Castellani V, Menichelli D, Pignatelli P, Pastori D. Gut barrier dysfunction and endotoxemia in heart failure: a dangerous connubium? Am Heart J. 2023;264:40–8.

Article  CAS  PubMed  Google Scholar 

Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R. International union of basic and clinical pharmacology. CI. Structures and small molecule modulators of mammalian adenylyl cyclases. Pharmacol Rev. 2017;69(2):93–139.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Danowitz M, De Leon DD. The role of GLP-1 signaling in hypoglycemia due to hyperinsulinism. Front Endocrinol (Lausanne). 2022;24(13): 863184.

Article  Google Scholar 

Kim GE, Kass DA. Cardiac phosphodiesterases and their modulation for treating heart disease. Handb Exp Pharmacol. 2017;243:249–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsai LC, Beavo JA. The roles of cyclic nucleotide phosphodiesterases (PDEs) in steroidogenesis. Curr Opin Pharmacol. 2011;11(6):670–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soderling SH, Beavo JA. Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr Opin Cell Biol. 2000;12(2):174–9.

Article  CAS  PubMed  Google Scholar 

Turner MJ, Sato Y, Thomas DY, Abbott-Banner K, Hanrahan JW. Phosphodiesterase 8A regulates CFTR activity in airway epithelial cells. Cell Physiol Biochem. 2021;55(6):784–804.

Article  CAS  PubMed  Google Scholar 

Han CK, Tien YC, Jine-Yuan Hsieh D, Ho TJ, Lai CH, Yeh YL, Hsuan Day C, Shen CY, Hsu HH, Lin JY, Huang CY. Attenuation of the LPS-induced, ERK-mediated upregulation of fibrosis-related factors FGF-2, uPA, MMP-2, and MMP-9 by Carthamus tinctorius L in cardiomyoblasts. Environ Toxicol. 2017;32(3):754–63.

Article  CAS  PubMed  Google Scholar 

Cai X, Cai J, Fang L, Xu S, Zhu H, Wu S, Chen Y, Fang S. Design, synthesis and molecular modeling of novel D-ring substituted steroidal 4,5-dihydropyrazole thiazolinone derivatives as anti-inflammatory agents by inhibition of COX-2/iNOS production and down-regulation of NF-κB/MAPKs in LPS-induced RAW264.7 macrophage cells. Eur J Med Chem. 2024;272:116460.

Article  CAS  PubMed  Google Scholar 

Lee JK, Wang X, Wang J, Rosales JL, Lee KY. PKA inhibition kills L-asparaginase-resistant leukemic cells from relapsed acute lymphoblastic leukemia patients. Cell Death Discov. 2024;10(1):257.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tomilin VN, Pyrshev K, Stavniichuk A, Hassanzadeh Khayyat N, Ren G, Zaika O, Khedr S, Staruschenko A, Mei FC, Cheng X, Pochynyuk O. Epac1-/- and Epac2-/- mice exhibit deficient epithelial Na+ channel regulation and impaired urinary Na+ conservation. JCI Insight. 2022;7(3): e145653.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif