Environmental and inflammatory factors influencing concurrent gut and lung inflammation

Chang JT. Pathophysiology of Inflammatory Bowel diseases. N Engl J Med. 2020;383:2652–64.

Article  PubMed  CAS  Google Scholar 

Richard N, Savoye G, Leboutte M, Amamou A, Ghosh S, Marion-Letellier R. Crohn’s disease: why the ileum? World J Gastroenterol. 2023;29:3222–40.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pizarro TT, Arseneau KO, Bamias G, Cominelli F. Mouse models for the study of Crohn’s disease. Trends Mol Med. 2003;9:218–22.

Article  PubMed  CAS  Google Scholar 

Raftery AL, Tsantikos E, Harris NL, Hibbs ML. Links between inflammatory bowel Disease and Chronic Obstructive Pulmonary Disease. Front Immunol. 2020;11:2144.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Friedrich M, Pohin M, Powrie F. Cytokine networks in the pathophysiology of inflammatory bowel disease. Immunity. 2019;50:992–1006.

Article  PubMed  CAS  Google Scholar 

Zhou GX, Liu ZJ. Potential roles of neutrophils in regulating intestinal mucosal inflammation of inflammatory bowel disease. J Dig Dis. 2017;18:495–503.

Article  PubMed  CAS  Google Scholar 

Wéra O, Lancellotti P, Oury C. The dual role of neutrophils in Inflammatory Bowel diseases. J Clin Med 5, 2016.

Korzenik JR, Dieckgraefe BK. Is Crohn’s disease an immunodeficiency? A hypothesis suggesting possible early events in the pathogenesis of Crohn’s disease. Dig Dis Sci. 2000;45:1121–9.

Article  PubMed  CAS  Google Scholar 

Brazil JC, Louis NA, Parkos CA. The role of polymorphonuclear leukocyte trafficking in the perpetuation of inflammation during inflammatory bowel disease. Inflamm Bowel Dis. 2013;19:1556–65.

Article  PubMed  Google Scholar 

Therrien A, Chapuy L, Bsat M, Rubio M, Bernard G, Arslanian E, et al. Recruitment of activated neutrophils correlates with disease severity in adult Crohn’s disease. Clin Exp Immunol. 2019;195:251–64.

Article  PubMed  CAS  Google Scholar 

Yantiss RK. Eosinophils in the GI tract: how many is too many and what do they mean? Mod Pathol. 2015;28(Suppl 1):S7–21.

Article  PubMed  Google Scholar 

Loktionov A. Eosinophils in the gastrointestinal tract and their role in the pathogenesis of major colorectal disorders. World J Gastroenterol. 2019;25:3503–26.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jeziorska M, Haboubi N, Schofield P, Woolley DE. Distribution and activation of eosinophils in inflammatory bowel disease using an improved immunohistochemical technique. J Pathol. 2001;194:484–92.

Article  PubMed  CAS  Google Scholar 

Lampinen M, Backman M, Winqvist O, Rorsman F, Ronnblom A, Sangfelt P, et al. Different regulation of eosinophil activity in Crohn’s disease compared with ulcerative colitis. J Leukoc Biol. 2008;84:1392–9.

Article  PubMed  CAS  Google Scholar 

Masterson JC, McNamee EN, Fillon SA, Hosford L, Harris R, Fernando SD, et al. Eosinophil-mediated signalling attenuates inflammatory responses in experimental colitis. Gut. 2015;64:1236–47.

Article  PubMed  CAS  Google Scholar 

Brennan GT, Melton SD, Spechler SJ, Feagins LA. Clinical implications of Histologic Abnormalities in Ileocolonic biopsies of patients with Crohn’s Disease in Remission. J Clin Gastroenterol. 2017;51:43–8.

Article  PubMed  Google Scholar 

Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016;138:16–27.

Article  PubMed  CAS  Google Scholar 

Kolsum U, Damera G, Pham TH, Southworth T, Mason S, Karur P, et al. Pulmonary inflammation in patients with chronic obstructive pulmonary disease with higher blood eosinophil counts. J Allergy Clin Immunol. 2017;140:1181–4. e7.

Article  PubMed  Google Scholar 

Ekbom A, Brandt L, Granath F, Löfdahl CG, Egesten A. Increased risk of both ulcerative colitis and Crohn’s disease in a population suffering from COPD. Lung. 2008;186:167–72.

Article  PubMed  Google Scholar 

Duricova D, Pedersen N, Elkjaer M, Gamborg M, Munkholm P, Jess T. Overall and cause-specific mortality in Crohn’s disease: a meta-analysis of population-based studies. Inflamm Bowel Dis. 2010;16:347–53.

Article  PubMed  Google Scholar 

Vutcovici M, Bitton A, Ernst P, Kezouh A, Suissa S, Brassard P. Inflammatory bowel disease and risk of mortality in COPD. Eur Respir J. 2016;47:1357–64.

Article  PubMed  Google Scholar 

Dang AT, Marsland BJ. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol. 2019;12:843–50.

Article  PubMed  CAS  Google Scholar 

Ungaro R, Bernstein CN, Gearry R, Hviid A, Kolho KL, Kronman MP, et al. Antibiotics associated with increased risk of new-onset Crohn’s disease but not ulcerative colitis: a meta-analysis. Am J Gastroenterol. 2014;109:1728–38.

Article  PubMed  CAS  Google Scholar 

Bowerman KL, Rehman SF, Vaughan A, Lachner N, Budden KF, Kim RY, et al. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat Commun. 2020;11:5886.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li N, Dai Z, Wang Z, Deng Z, Zhang J, Pu J, et al. Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease. Respir Res. 2021;22:274.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kerr WG, Park M-Y, Maubert M, Engelman RW. SHIP deficiency causes Crohn’s disease-like ileitis. Gut. 2011;60:177–88.

Article  PubMed  Google Scholar 

McLarren KW, Cole AE, Weisser SB, Voglmaier NS, Conlin VS, Jacobson K, et al. SHIP-Deficient mice develop spontaneous intestinal inflammation and arginase-dependent fibrosis. Am J Pathol. 2011;179:180–8.

Article  PubMed  PubMed Central  Google Scholar 

Maxwell MJ, Srivastava N, Park MY, Tsantikos E, Engelman RW, Kerr WG, et al. SHIP-1 deficiency in the myeloid compartment is insufficient to induce myeloid expansion or chronic inflammation. Genes Immun. 2014;15:233–40.

Article  PubMed  CAS  Google Scholar 

Dobranowski PA, Tang C, Sauvé JP, Menzies SC, Sly LM. Compositional changes to the ileal microbiome precede the onset of spontaneous ileitis in SHIP deficient mice. Gut Microbes. 2019;10:578–98.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fernandes S, Srivastava N, Sudan R, Middleton FA, Shergill AK, Ryan JC et al. SHIP1 Deficiency in Inflammatory Bowel Disease is Associated with severe Crohn’s Disease and Peripheral T Cell reduction. Front Immunol 2018; 9.

Ngoh EN, Brugger HK, Monajemi M, Menzies SC, Hirschfeld AF, Del Bel KL, et al. The Crohn’s disease-associated polymorphism in ATG16L1 (rs2241880) reduces SHIP gene expression and activity in human subjects. Genes Immun. 2015;16:452–61.

Article  PubMed  CAS  Google Scholar 

Ngoh EN, Weisser SB, Lo Y, Kozicky LK, Jen R, Brugger HK, et al. Activity of SHIP, which prevents expression of Interleukin 1β, is reduced in patients with Crohn’s Disease. Gastroenterology. 2016;150:465–76.

Article  PubMed  CAS  Google Scholar 

Somasundaram R, Fernandes S, Deuring JJ, de Haar C, Kuipers EJ, Vogelaar L, et al. Analysis of SHIP1 expression and activity in Crohn’s disease patients. PLoS ONE. 2017;12:e0182308.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif