Ren M, Ai Q, Mai K, Ma H, Wang X. Effect of dietary carbohydrate level on growth performance, body composition, apparent digestibility coefficient and digestive enzyme activities of juvenile cobia, rachycentron canadum l. Aquac Res. 2011;42(10):1467–75. https://doi.org/10.1111/j.1365-2109.2010.02739.x.
Zhou C, Ge X, Niu J, Lin H, Huang Z, Tan X. Effect of dietary carbohydrate levels on growth performance, body composition, intestinal and hepatic enzyme activities, and growth hormone gene expression of juvenile golden pompano, trachinotus ovatus. Aquaculture. 2015;437:390–7. https://doi.org/10.1016/j.aquaculture.2014.12.016.
Kamalam B, Medale F, Panserat S. Utilisation of dietary carbohydrates in farmed fishes: new insights on influencing factors, biological limitations and future strategies. Aquaculture. 2017;467:3–27. https://doi.org/10.1016/j.aquaculture.2016.02.007.
Lin M, Shi M, Mu M, Chen J, Luo L. Effect of high dietary starch levels on growth, hepatic glucose metabolism, oxidative status and immune response of juvenile largemouth bass, Micropterus salmoides. Fish Shellfish Immunol. 2018;78:121–6. https://doi.org/10.1016/j.fsi.2018.04.046.
Article CAS PubMed Google Scholar
Zhong L, Liu H, Zhang H, Zhang W, Li M, Huang Y, Yao J, Huang X, Geng Y, Chen D, Ouyang P, Yang S, Luo W, Yin L. High starch in diet leads to disruption of hepatic glycogen metabolism and liver fibrosis in largemouth bass (Micropterus salmoides), which is mediated by the PI3K/Akt signaling pathway. Front Physiol. 2022;13:880513. https://doi.org/10.3389/fphys.2022.880513.
Article PubMed PubMed Central Google Scholar
Li S, Sang C, Wang A, Zhang J, Chen N. Effects of dietary carbohydrate sources on growth performance, glycogen accumulation, insulin signaling pathway and hepatic glucose metabolism in largemouth bass, Micropterus salmoides. Aquaculture. 2019;513:734391. https://doi.org/10.1016/j.aquaculture.2019.734391.
Li X, Zheng S, Jia S, Song F, Wu G. Oxidation of energy substrates in tissues of largemouth bass (Micropterus salmoides). Amino Acids. 2020;52:1017–32. https://doi.org/10.1007/s00726-020-02871-y.
Article CAS PubMed Google Scholar
Ma H, Mou M, Pu D, Lin S, Chen Y, Luo L. Effect of dietary starch level on growth, metabolism enzyme and oxidative status of juvenile largemouth bass, micropterus salmoides. Aquaculture. 2019;498:482–7. https://doi.org/10.1016/j.aquaculture.2018.07.039.
Wu L, Guo C, Feng J. Astaxanthin attenuates hepatic damages and mitochondrial dysfunction in nonalcoholic fatty liver disease by regulating the fgf21/pgc-1α pathway. HPB. 2021;23:S193. https://doi.org/10.1016/j.hpb.2020.11.482.
Mccarty M. Full-spectrum antioxidant therapy featuring astaxanthin coupled with lipoprivic strategies and salsalate for management of non-alcoholic fatty liver disease. Med Hypotheses. 2011;77(4):550–6. https://doi.org/10.1016/j.mehy.2011.06.029.
Article CAS PubMed Google Scholar
Bhuvaneswari S, Yogalakshmi B. Astaxanthin reduces hepatic endoplasmic reticulum stress and nuclear factor-κb-mediated inflammation in high fructose and high fat diet-fed mice. Cell Stress Chaperon. 2014;19(2):183–91. https://doi.org/10.1007/s12192-013-0443-x.
Sila A, Kamoun Z, Ghlissi Z, Makni M, Nasri M, Sahnoun Z, Nedjar-Arroume N, Bougatef A. Ability of natural astaxanthin from shrimp by-products to attenuate liver oxidative stress in diabetic rats. Pharmacol Rep. 2015;67(2):310–6. https://doi.org/10.1016/j.pharep.2014.09.012.
Article CAS PubMed Google Scholar
Xie S, Yin P, Tian L, Yu Y, Niu J. Dietary supplementation of astaxanthin improved the growth performance, antioxidant ability and immune response of juvenile largemouth bass (micropterus salmoides) fed high-fat diet. Mar Drugs. 2020;18(12):642. https://doi.org/10.3390/md18120642.
Article CAS PubMed PubMed Central Google Scholar
Enes P, Peres H, Pou sã O-Ferreira P, Sanchez-Gurmaches J, Navarro I, Gutiérrez J, Oliva-Teles A. Glycemic and insulin responses in white sea bream diplodus sargus, after intraperitoneal administration of glucose. Fish Physiol Biochem. 2012;38(3):645–52. https://doi.org/10.1007/s10695-011-9546-410.1007/s10695-011-9546-4.
Chen Y, Wang X, Pi R, Feng J, Luo L, Lin S, Wang D. Preproinsulin expression, insulin release, and hepatic glucose metabolism after a glucose load in the omnivorous GIFT tilapia Oreochromis Niloticus. Aquaculture. 2017;482:183–92. https://doi.org/10.1016/j.aquaculture.2017.10.001.
Kamalam B, Medale F, Panserat S. Utilization of dietary carbohydrates in farmed fishes: new insights on influencing factors, biological limitations and future strategies. Aquaculture. 2017;467:3–27. https://doi.org/10.1016/j.aquaculture.2016.02.007.
Enes P, Peres H, Sanchez-Gurmaches J, Navarro I, GutiérrezJ, Oliva-Teles A. Insulin and igf-i response to a glucose load in European sea bass (dicentrarchus labrax) juveniles. Aquaculture. 2011;315(3–4):321–6. https://doi.org/10.1016/j.aquaculture.2011.02.042.
Al-Attar A, Alsalmi F. Influence of olive leaves extract on hepatorenal injury in streptozotocin diabetic rats. Saudi J Biol Sci. 2018;26(7):1865–74. https://doi.org/10.1016/j.sjbs.2017.02.005.
Zhang Y, Wang Y, Luo M, Xu F, Lu Y, Xiao X, Wen P, Li N. Elabela protects against podocyte injury in mice with streptozocin-induced diabetes by associating with the PI3K/Akt/mTOR pathway. Peptides. 2019;114:29–37. https://doi.org/10.1016/j.peptides.2019.04.005.
Article CAS PubMed Google Scholar
Chen S, Liu X, Peng Y. MicroRNA-351 eases insulin resistance and liver gluconeogenesis via the PI3K/AKT pathway by inhibiting FLOT2 in mice of gestational diabetes mellitus. J Cell Mol Med. 2019;3(9):5895–906. https://doi.org/10.1111/jcmm.14079.
Bhuvaneswari S, Arunkumar E, Viswanathan P, Anuradha C. Astaxanthin restricts weight gain, promotes insulin sensitivity, and curtails fatty liver disease in mice fed with obesity promoting diet. Process Biochem. 2010;45:1406–14. https://doi.org/10.1016/j.procbio.2010.05.016.
Arunkumar E, Bhuvaneswari S, Anuradha C. An intervention study in obese mice with astaxanthin, a marine carotenoid-effects on insulin signaling and pro-inflammatory cytokines. Food Funct. 2012;3(2):120–6. https://doi.org/10.1039/c1fo10161g.
Article CAS PubMed Google Scholar
Zhang W, Liu K, Tan B, Liu H, Dong X, Yang X, Chi S, Zhang S, Wang H. Transcriptome, enzyme activity and histopathology analysis reveal the effects of dietary carbohydrate on glycometabolism in juvenile largemouth bass, micropterus salmoides. Aquaculture. 2019;504:39–51. https://doi.org/10.1016/j.aquaculture.2019.01.030.
He X, Chen A, Liao Z, Zhang Y, Lin G, Zhuang Z, Liu Y, Wei H, Wang Z, Wang Y, Niu J. Diet supplementation of organic zinc positively affects growth, antioxidant capacity, immune response and lipid metabolism in juvenile largemouth bass, Micropterus salmoides. Brit J Nutr. 2023;1–15. https://doi.org/10.1017/S0007114523000909.
Chen P, Wu X, Gu X, Han J, Xue M, Liang X. FoxO1 in Micropterus salmoides: molecular characterization and its roles in glucose metabolism by glucose or insulin-glucose loading. Gen Comp Endocr. 2021;310:1–11. https://doi.org/10.1016/j.ygcen.2021.113811.
Qin Y, Zhang L, Chen P, Liang X. Dietary bile acids enhance growth, and alleviate hepatic fibrosis induced by a high starch diet via AKT/FOXO1 and cAMP/AMPK/SREBP1 pathway in Micropterus salmoides. Front Physiol. 2019;10:p1430. https://doi.org/10.3389/fphys.2019.01430.
Li X, Zheng S, Ma X, Cheng K, Wu G. Effects of dietary starch and lipid levels on the protein retention and growth of largemouth bass (Micropterus salmoides). Amino Acids. 2020;52(Suppl 3). https://doi.org/10.1007/s00726-020-02869-6.
Li S, Sang C, Turchini G, Wang A, Chen N. Starch in aquafeeds: the benefits of a high amylose to amylopectin ratio and resistant starch content in diets for the carnivorous fish, largemouth bass (micropterus salmoides). Brit J Nutr. 2020;124(11):1–29. https://doi.org/10.1017/S0007114520002214.
Article CAS PubMed Google Scholar
Fang H, Xie J, Zhao W, Liu Z, Liu Y, Tian L, Niu J. Study supplementation of astaxanthin in high-fat diet on growth performance, antioxidant ability, anti-inflammation, non-specific immunity and intestinal structure of juvenile trachinotus ovatus. Aquac Nutr. 2021;27(6):2575–86. https://doi.org/10.1111/anu.13386.
Zhao W, Yao R, Wei H, Guo Y, Chen A, Chen B, Niu J. Astaxanthin, bile acid and chlorogenic acid attenuated the negative effects of high-fat diet on the growth, lipid deposition, and liver health of Oncorhynchus mykiss). Aquaculture. 2023;567:739255. https://doi.org/10.1016/j.aquaculture.2023.739255.
Li X, Han T, Zheng S, Wu G. Hepatic glucose metabolism and its disorders in fish. Adv Exp Med Biol. 2022;1354:207–36. https://doi.org/10.1186/1742-9
留言 (0)