Hanahan D (2022) Hallmarks of cancer: new dimensions. Cancer Discov 12:31–46. https://doi.org/10.1158/2159-8290.CD-21-1059
Article CAS PubMed Google Scholar
Tuli HS, Sak K, Garg VK, Kumar A, Adhikary S, Kaur G, Parashar NC, Parashar G, Mukherjee TK, Sharma U, Jain A, Mohapatra RK, Dhama K, Kumar M, Singh T (2022) Ampelopsin targets in cellular processes of cancer: Recent trends and advances. Toxicol Rep. https://doi.org/10.1016/j.toxrep.2022.07.013
Article PubMed PubMed Central Google Scholar
Singh D, Vignat J, Lorenzoni V, Eslahi M, Ginsburg O, Lauby-Secretan B, Arbyn M, Basu P, Bray F, Vaccarella S (2023) Global estimates of incidence and mortality of cervical cancer in 2020: a baseline analysis of the WHO Global Cervical Cancer Elimination Initiative. Lancet Glob Health. https://doi.org/10.1016/S2214-109X(22)00501-0
Article PubMed PubMed Central Google Scholar
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660
Article CAS PubMed Google Scholar
Siegel RL, Giaquinto AN, Jemal A (2024) Cancer statistics, 2024. CA Cancer J Clin. https://doi.org/10.3322/caac.21820
Laurindo LF, de Maio MC, Minniti G, de Góes Corrêa N, Barbalho SM, Quesada K, Guiguer EL, Sloan KP, Detregiachi CRP, Araújo AC, de Alvares GR (2023) Effects of medicinal plants and phytochemicals in Nrf2 pathways during inflammatory bowel diseases and related colorectal cancer: a comprehensive review. Metabolites. https://doi.org/10.3390/metabo13020243
Article PubMed PubMed Central Google Scholar
Majolo F, de Oliveira Becker LK, Delwing DJ, Marmitt IC, Bustamante-Filho MIG (2019) Medicinal plants and bioactive natural compounds for cancer treatment: Important advances for drug discovery. Phytochem Lett 31:196–207. https://doi.org/10.1016/j.phytol.2019.04.003
Gezici S, Şekeroğlu N (2019) Current perspectives in the application of medicinal plants against cancer: novel therapeutic agents. Anticancer Agents Med Chem. https://doi.org/10.2174/1871520619666181224121004
Rodríguez-Morató J, Xicota L, Fitó M, Farré M, Dierssen M, De La Torre R (2015) Potential role of olive oil phenolic compounds in the prevention of neurodegenerative diseases. Molecules 20:4655–4680. https://doi.org/10.3390/molecules20034655
Article CAS PubMed PubMed Central Google Scholar
Visioli F, Bellomo G, Galli C (1998) Free radical-scavenging properties of olive oil polyphenols. Biochem Biophys Res Commun. https://doi.org/10.1006/bbrc.1998.8735
Deiana M, Aruoma OI, Bianchi MDLP, Spencer JPE, Kaur H, Halliwell B, Aeschbach R, Banni S, Dessi MA, Corongiu FP (1999) Inhibition of peroxynitrite dependent DNA base modification and tyrosine nitration by the extra virgin olive oil-derived antioxidant hydroxytyrosol. Free Radic Biol Med 26:762–769. https://doi.org/10.1016/S0891-5849(98)00231-7
Article CAS PubMed Google Scholar
Haloui E, Marzouk B, Marzouk Z, Bouraoui A, Fenina N (2011) Hydroxytyrosol and oleuropein from olive leaves: Potent anti-inflammatory and analgesic activities. J Food Agric Environ 9:128–133
Escrich E, Moral R, Solanas M (2011) Olive oil, an essential component of the Mediterranean diet, and breast cancer. Public Health Nutr 14:2323–2332. https://doi.org/10.1017/S1368980011002588
Sánchez-Quesada C, Gutiérrez-Santiago F, Rodríguez-García C, Gaforio JJ (2022) Synergistic effect of squalene and hydroxytyrosol on highly invasive MDA-MB-231 breast cancer cells. Nutrients. https://doi.org/10.3390/nu14020255
Article PubMed PubMed Central Google Scholar
Terzuoli E, Giachetti A, Ziche M, Donnini S (2016) Hydroxytyrosol, a product from olive oil, reduces colon cancer growth by enhancing epidermal growth factor receptor degradation. Mol Nutr Food Res 60:519–529. https://doi.org/10.1002/mnfr.201500498
Article CAS PubMed Google Scholar
Cheng C-W, Tse E (2018) PIN1 in cell cycle control and cancer. Front Pharmacol. https://doi.org/10.3389/fphar.2018.01367
Article PubMed PubMed Central Google Scholar
He S, Li L, Jin R, Lu X (2023) Biological function of Pin1 in vivo and its inhibitors for preclinical study: early development, current strategies, and future directions. J Med Chem 66:9251–9277. https://doi.org/10.1021/acs.jmedchem.3c00390
Article CAS PubMed Google Scholar
Gordon MH, Paiva-Martins F, Almeida M (2001) Antioxidant activity of hydroxytyrosol acetate compared with that of other olive oil polyphenols. J Agric Food Chem 49:2480–2485. https://doi.org/10.1021/jf000537w
Article CAS PubMed Google Scholar
Carluccio MA, Martinelli R, Massaro M, Calabriso N, Scoditti E, Maffia M, Verri T, Gatta V, De Caterina R (2021) Nutrigenomic effect of hydroxytyrosol in vascular endothelial cells: a transcriptomic profile analysis. Nutrients. https://doi.org/10.3390/nu13113990
Article PubMed PubMed Central Google Scholar
Bouallagui Z, Han J, Isoda H, Sayadi S (2011) Hydroxytyrosol rich extract from olive leaves modulates cell cycle progression in MCF-7 human breast cancer cells. Food Chem Toxicol 49:179–184. https://doi.org/10.1016/j.fct.2010.10.014
Article CAS PubMed Google Scholar
De López Las MC, Hazas C, Piñol A, Macià MJM (2017) Hydroxytyrosol and the colonic metabolites derived from virgin olive oil intake induce cell cycle arrest and apoptosis in colon cancer cells. J Agric Food Chem 65:6467–6476. https://doi.org/10.1021/acs.jafc.6b04933
Zubair H, Bhardwaj A, Ahmad A, Srivastava SK, Khan MA, Patel GK, Singh S, Singh AP (2017) Hydroxytyrosol induces apoptosis and cell cycle arrest and suppresses multiple oncogenic signaling pathways in prostate cancer cells. Nutr Cancer 69:932–942. https://doi.org/10.1080/01635581.2017.1339818
Article CAS PubMed PubMed Central Google Scholar
Bendini A, Cerretani L, Carrasco-Pancorbo A, Gómez-Caravaca A, Segura-Carretero A, Fernández-Gutiérrez A, Lercker G (2007) Phenolic molecules in virgin olive oils: a survey of their sensory properties, health effects, antioxidant activity and analytical methods. Overv Last Decade Alessandra Molecules 12:1679–1719. https://doi.org/10.3390/12081679
Gouvinhas I, Machado N, Sobreira C, Domínguez-Perles R, Gomes S, Rosa E, Barros AIRNA (2017) Critical review on the significance of olive phytochemicals in plant physiology and human health. Molecules. https://doi.org/10.3390/molecules22111986
Article PubMed PubMed Central Google Scholar
Martínez-Zamora L, Peñalver R, Ros G, Nieto G (2021) Olive tree derivatives and hydroxytyrosol: their potential effects on human health and its use as functional ingredient in meat. Foods. https://doi.org/10.3390/foods10112611
Kalampaliki AD, Giannouli V, Skaltsounis A-L, Kostakis IK, Three-Step A (2019) Gram-scale synthesis of hydroxytyrosol, hydroxytyrosol acetate, and 3,4-dihydroxyphenylglycol. Molecules. https://doi.org/10.3390/molecules24183239
Article PubMed PubMed Central Google Scholar
Napolitano A, De Lucia M, Panzella L, d’Ischia M (2010) The Chemistry of Tyrosol and Hydroxytyrosol. In: Olives and Olive Oil in Health and Disease Prevention, Elsevier, pp 1225–1232. https://doi.org/10.1016/B978-0-12-374420-3.00134-0
Sun Y, Zhou D, Shahidi F (2018) Antioxidant properties of tyrosol and hydroxytyrosol saturated fatty acid esters. Food Chem 245:1262–1268. https://doi.org/10.1016/j.foodchem.2017.11.051
Article CAS PubMed Google Scholar
Vijakumaran U, Shanmugam J, Heng JW, Azman SS, Yazid MD, Haizum Abdullah NA, Sulaiman N (2023) Effects of hydroxytyrosol in endothelial functioning: a comprehensive review. Molecules. https://doi.org/10.3390/molecules28041861
留言 (0)