Inducible antibacterial responses in macrophages

Underhill, D. M. & Goodridge, H. S. Information processing during phagocytosis. Nat. Rev. Immunol. 12, 492–502 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neupane, A. S. et al. Patrolling alveolar macrophages conceal bacteria from the immune system to maintain homeostasis. Cell 183, 110–125.e11 (2020). Through the use of intravital imaging, this study shows that alveolar macrophages crawl between alveoli, phagocytosing bacterial pathogens to prevent damaging inflammatory responses.

Article  CAS  PubMed  Google Scholar 

Mass, E., Nimmerjahn, F., Kierdorf, K. & Schlitzer, A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat. Rev. Immunol. 23, 563–579 (2023).

Article  CAS  PubMed  Google Scholar 

Gomez Perdiguero, E. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547–551 (2015).

Article  PubMed  Google Scholar 

Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792–804 (2013).

Article  CAS  PubMed  Google Scholar 

Misharin, A. V. et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 214, 2387–2404 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Helmy, K. Y. et al. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124, 915–927 (2006).

Article  CAS  PubMed  Google Scholar 

Houghton, A. M., Hartzell, W. O., Robbins, C. S., Gomis-Rüth, F. X. & Shapiro, S. D. Macrophage elastase kills bacteria within murine macrophages. Nature 460, 637–641 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wan, M., Zhou, Y. & Zhu, Y. Subversion of macrophage functions by bacterial protein toxins and effectors. Curr. Issues Mol. Biol. 25, 61–80 (2018).

Article  PubMed  Google Scholar 

Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sai, K., Parsons, C., House, J. S., Kathariou, S. & Ninomiya-Tsuji, J. Necroptosis mediators RIPK3 and MLKL suppress intracellular Listeria replication independently of host cell killing. J. Cell Biol. 218, 1994–2005 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fitzgerald, K. A. & Kagan, J. C. Toll-like receptors and the control of immunity. Cell 180, 1044–1066 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

Article  CAS  PubMed  Google Scholar 

Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

Article  CAS  PubMed  Google Scholar 

Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

Article  CAS  PubMed  Google Scholar 

Mukherjee, S., Huda, S. & Sinha Babu, S. P. Toll-like receptor polymorphism in host immune response to infectious diseases: a review. Scand. J. Immunol. 90, e12771 (2019).

Article  PubMed  Google Scholar 

von Bernuth, H. et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321, 691–696 (2008).

Article  Google Scholar 

Picard, C. et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299, 2076–2079 (2003).

Article  CAS  PubMed  Google Scholar 

Casanova, J. L., MacMicking, J. D. & Nathan, C. F. Interferon-γ and infectious diseases: lessons and prospects. Science 384, eadl2016 (2024).

Article  CAS  PubMed  Google Scholar 

Rosain, J. et al. Mendelian susceptibility to mycobacterial disease: 2014–2018 update. Immunol. Cell Biol. 97, 360–367 (2019).

Article  PubMed  Google Scholar 

Kamijo, R. et al. Mice that lack the interferon-gamma receptor have profoundly altered responses to infection with Bacillus Calmette–Guérin and subsequent challenge with lipopolysaccharide. J. Exp. Med. 178, 1435–1440 (1993).

Article  CAS  PubMed  Google Scholar 

Pham, T. H. M. et al. Salmonella-driven polarization of granuloma macrophages antagonizes TNF-mediated pathogen restriction during persistent infection. Cell Host Microbe 27, 54–67.e5 (2020).

Article  CAS  PubMed  Google Scholar 

Dang, A. T. et al. IL-26 contributes to host defense against intracellular bacteria. J. Clin. Invest. 129, 1926–1939 (2019). This study shows that the cytokine IL-26, which is produced by TH17 cells and can have direct antimicrobial effects, also licences macrophage antimicrobial responses by inducing autophagy and by targeting intracellular bacteria.

Article  PubMed  PubMed Central  Google Scholar 

Cui, A. et al. Dictionary of immune responses to cytokines at single-cell resolution. Nature 625, 377–384 (2024).

Article  CAS  PubMed  Google Scholar 

Gray, M. A. et al. Phagocytosis enhances lysosomal and bactericidal properties by activating the transcription factor TFEB. Curr. Biol. 26, 1955–1964 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanjuan, M. A. et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253–1257 (2007).

Article  CAS  PubMed  Google Scholar 

Martinez, J. et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17, 893–906 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akoumianaki, T. et al. Uncoupling of IL-6 signaling and LC3-associated phagocytosis drives immunoparalysis during sepsis. Cell Host Microbe 29, 1277–1293.e6 (2021). This paper identifies a central role for IL-6 signalling in the initiation of LC3-associated phagocytosis (LAP) and shows that the IL-6–LAP axis is defective in sepsis.

Article  CAS  PubMed  Google Scholar 

Yuan, J., Zhang, Q., Chen, S., Yan, M. & Yue, L. LC3-associated phagocytosis in bacterial infection. Pathogens 11, 863 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaspersen, K. A. et al. Obesity and risk of infection: results from the Danish Blood Donor Study. Epidemiology 26, 580–589 (2015).

Article  PubMed  Google Scholar 

Fischer, J. et al. Leptin signaling impairs macrophage defenses against Salmonella Typhimurium. Proc. Natl Acad. Sci. USA 116, 16551–16560 (2019). This study demonstrates a molecular link between organismal metabolism and antibacterial defence, showing that signalling via the appetite-controlling hormone leptin impairs lysosome-mediated clearance of Salmonella by macrophages.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif