Gennis R.B. 1989. Biomembranes: Molecular structure and function. Springer.
Jørgensen K., Mouritsen O.G. 1995. Phase separation dynamics and lateral organization of two-component lipid membranes. Biophys. J. 69 (3), 942–954.
Article PubMed PubMed Central Google Scholar
Brown D.A., London E. 1998. Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164 (2), 103–114.
Article CAS PubMed Google Scholar
Lingwood D., Kaiser H.J., Levental I., Simons K. 2009. Lipid rafts as functional heterogeneity in cell membranes. Biochem. Soc. Trans. 37 (Pt 5), 955–960.
Article CAS PubMed Google Scholar
Freire E., Snyder B. 1980. Estimation of the lateral distribution of molecules in two-component lipid bilayers. Biochemistry. 19 (1), 88–94.
Article CAS PubMed Google Scholar
Curatolo W., Sears B., Neuringer L.J. 1985. A calorimetry and deuterium NMR study of mixed model membranes of 1-palmitoyl-2-oleylphosphatidylcholine and saturated phosphatidylcholines. Biochim. Biophys. Acta. 817 (2), 261–270.
Article CAS PubMed Google Scholar
Pinkwart K., Schneider F., Lukoseviciute M., Sauka-Spengler T., Lyman E., Eggeling C., Sezgin E. 2019. Nanoscale dynamics of cholesterol in the cell membrane. J. Biol. Chem. 294 (34), 12 599–12 609.
Sezgin E., Levental I., Mayor S., Eggeling C. 2017. The mystery of membrane organization: Composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18 (6), 361–374.
Article CAS PubMed PubMed Central Google Scholar
Fantini J., Barrantes F.J. 2013. How cholesterol interacts with membrane proteins: An exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front. Physiol. 4, 31.
Article CAS PubMed PubMed Central Google Scholar
Sohlenkamp C., Geiger O. 2016. Bacterial membrane lipids: Diversity in structures and pathways. FEMS Microbiol. Rev. 40 (1), 133–159.
Article CAS PubMed Google Scholar
Efremov R.G., Chugunov A.O., Pyrkov T.V., Priestle J.P., Arseniev A.S., Jacoby E. 2007. Molecular lipophilicity in protein modeling and drug design. Curr. Med. Chem. 14 (4), 393–415.
Article CAS PubMed Google Scholar
Koromyslova A.D., Chugunov A.O., Efremov R.G. 2014. Deciphering fine molecular details of proteins’ structure and function with a protein surface topography (PST) method. J. Chem. Inf. Model. 54 (4), 1189–1199.
Article CAS PubMed Google Scholar
Efremov R.G., Gulyaev D.I., Modyanov N.N. 1993. Application of three-dimensional molecular hydrophobicity potential to the analysis of spatial organization of membrane domains in proteins. III. Modeling of intramembrane moiety of Na+, K+-ATPase. J. Protein. Chem. 12 (2), 143–152.
Article CAS PubMed Google Scholar
Engelman D.M. 2005. Membranes are more mosaic than fluid. Nature 438 (7068), 578–580.
Article CAS PubMed Google Scholar
Cebecauer M., Amaro M., Jurkiewicz P., Sarmento M.J., Šachl R., Cwiklik L., Hof M. 2018. Membrane lipid nanodomains. Chem. Rev. 118 (23), 11 259–11 297.
Enkavi G., Javanainen M., Kulig W., Róg T., Vattulainen I. 2019. Multiscale simulations of biological membranes: The challenge to understand biological phenomena in a living substance. Chem. Rev. 119 (9), 5607–5774.
Article CAS PubMed PubMed Central Google Scholar
Kinnun J.J., Bolmatov D., Lavrentovich M.O., Katsaras J. 2020. Lateral heterogeneity and domain formation in cellular membranes. Chem. Phys. Lipids. 232 104976.
Article CAS PubMed PubMed Central Google Scholar
Kure J.L., Andersen C.B., Mortensen K.I., Wiseman P.W., Arnspang E.C. 2020. Revealing plasma membrane nano-domains with diffusion analysis methods. Membranes. 10 (11), 314.
Article CAS PubMed PubMed Central Google Scholar
Phillips R., Ursell T., Wiggins P., Sens P. 2009. Emerging roles for lipids in shaping membrane-protein function. Nature. 459 (7245), 379–385.
Article CAS PubMed PubMed Central Google Scholar
Bocharov E.V., Mineev K.S., Pavlov K.V., Akimov S.A., Kuznetsov A.S., Efremov R.G., Arseniev A.S. 2017. Helix-helix interactions in membrane domains of bitopic proteins: Specificity and role of lipid environment. Biochim. Biophys. Acta. 1859 (4), 561–576.
Vanni S., Hirose H., Barelli H., Antonny B., Gautier R. 2014. A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment. Nat. Commun. 5 (1), 4916.
Article CAS PubMed Google Scholar
Sharma S., Lindau M. 2017. t-SNARE transmembrane domain clustering modulates lipid organization and membrane curvature. J. Am. Chem. Soc. 139 (51), 18 440–18 443.
Schmid F. 2017. Physical mechanisms of micro- and nanodomain formation in multicomponent lipid membranes. Biochim. Biophys. Acta. 1859 (4), 509–528.
Polyansky A.A., Volynsky P.E., Arseniev A.S., Efremov R.G. 2009. Adaptation of a membrane-active peptide to heterogeneous environment. Ii. The role of mosaic nature of the membrane surface. J. Phys. Chem. B. 113 (4), 1120–1126.
Article CAS PubMed Google Scholar
Agmo Hernández V., Karlsson G., Edwards K. 2011. Intrinsic heterogeneity in liposome suspensions caused by the dynamic spontaneous formation of hydrophobic active sites in lipid membranes. Langmuir. 27 (8), 4873–4883.
de Wit G., Danial J.S., Kukura P., Wallace M.I. 2015. Dynamic label-free imaging of lipid nanodomains. Proc. Natl. Acad. Sci. USA. 112 (40), 12299–12303.
Article CAS PubMed PubMed Central Google Scholar
Yano Y., Hanashima S., Tsuchikawa H., Yasuda T., Slotte J.P., London E., Murata M. 2020. Sphingomyelins and ent-sphingomyelins form homophilic nano-subdomains within liquid ordered domains. Biophys. J. 119 (3), 539–552.
Article CAS PubMed PubMed Central Google Scholar
Efremov R.G. 2021. Dynamic “molecular portraits” of biomembranes drawn by their lateral nanoscale inhomogeneities. Int. J. Mol. Sci. 22 (12), 6250.
Article PubMed PubMed Central Google Scholar
Boggs J.M. 1980. Intermolecular hydrogen bonding between lipids: Influence on organization and function of lipids in membranes. Can. J. Biochem. 58 (10), 755–770.
Article CAS PubMed Google Scholar
Efremov R.G. 2019. Dielectric-dependent strength of interlipid hydrogen bonding in biomembranes: Model case study. J. Chem. Inf. Model. 59 (6), 2765–2775.
Article CAS PubMed Google Scholar
Marrink S.J., Risselada H.J., Yefimov S., Tieleman D.P., de Vries A.H. 2007. The MARTINI force field: Coarse grained model for biomolecular simulations. J. Phys. Chem. B. 111 (27), 7812–7824.
Article CAS PubMed Google Scholar
Polyansky A.A., Ramaswamy R., Volynsky P.E., Sbalzarini I.F., Marrink S.J., Efremov R.G. 2010. Antimicrobial peptides induce growth of phosphatidylglycerol domains in a model bacterial membrane. J. Phys. Chem. Lett. 1 (20), 3108–3111.
Epand R.F., Maloy W.L., Ramamoorthy A., Epand R.M. 2010. Probing the “charge cluster mechanism” in amphipathic helical cationic antimicrobial peptides. Biochemistry. 49 (19), 4076–4084.
留言 (0)