Lipid-Mediated Adaptation of Proteins and Peptides in Cell Membranes

Gennis R.B. 1989. Biomembranes: Molecular structure and function. Springer.

Book  Google Scholar 

Jørgensen K., Mouritsen O.G. 1995. Phase separation dynamics and lateral organization of two-component lipid membranes. Biophys. J. 69 (3), 942–954.

Article  PubMed  PubMed Central  Google Scholar 

Brown D.A., London E. 1998. Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164 (2), 103–114.

Article  CAS  PubMed  Google Scholar 

Lingwood D., Kaiser H.J., Levental I., Simons K. 2009. Lipid rafts as functional heterogeneity in cell membranes. Biochem. Soc. Trans. 37 (Pt 5), 955–960.

Article  CAS  PubMed  Google Scholar 

Freire E., Snyder B. 1980. Estimation of the lateral distribution of molecules in two-component lipid bilayers. Biochemistry. 19 (1), 88–94.

Article  CAS  PubMed  Google Scholar 

Curatolo W., Sears B., Neuringer L.J. 1985. A calorimetry and deuterium NMR study of mixed model membranes of 1-palmitoyl-2-oleylphosphatidylcholine and saturated phosphatidylcholines. Biochim. Biophys. Acta. 817 (2), 261–270.

Article  CAS  PubMed  Google Scholar 

Pinkwart K., Schneider F., Lukoseviciute M., Sauka-Spengler T., Lyman E., Eggeling C., Sezgin E. 2019. Nanoscale dynamics of cholesterol in the cell membrane. J. Biol. Chem. 294 (34), 12 599–12 609.

Article  Google Scholar 

Sezgin E., Levental I., Mayor S., Eggeling C. 2017. The mystery of membrane organization: Composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18 (6), 361–374.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fantini J., Barrantes F.J. 2013. How cholesterol interacts with membrane proteins: An exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front. Physiol. 4, 31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sohlenkamp C., Geiger O. 2016. Bacterial membrane lipids: Diversity in structures and pathways. FEMS Microbiol. Rev. 40 (1), 133–159.

Article  CAS  PubMed  Google Scholar 

Efremov R.G., Chugunov A.O., Pyrkov T.V., Priestle J.P., Arseniev A.S., Jacoby E. 2007. Molecular lipophilicity in protein modeling and drug design. Curr. Med. Chem. 14 (4), 393–415.

Article  CAS  PubMed  Google Scholar 

Koromyslova A.D., Chugunov A.O., Efremov R.G. 2014. Deciphering fine molecular details of proteins’ structure and function with a protein surface topography (PST) method. J. Chem. Inf. Model. 54 (4), 1189–1199.

Article  CAS  PubMed  Google Scholar 

Efremov R.G., Gulyaev D.I., Modyanov N.N. 1993. Application of three-dimensional molecular hydrophobicity potential to the analysis of spatial organization of membrane domains in proteins. III. Modeling of intramembrane moiety of Na+, K+-ATPase. J. Protein. Chem. 12 (2), 143–152.

Article  CAS  PubMed  Google Scholar 

Engelman D.M. 2005. Membranes are more mosaic than fluid. Nature 438 (7068), 578–580.

Article  CAS  PubMed  Google Scholar 

Cebecauer M., Amaro M., Jurkiewicz P., Sarmento M.J., Šachl R., Cwiklik L., Hof M. 2018. Membrane lipid nanodomains. Chem. Rev. 118 (23), 11 259–11 297.

Article  Google Scholar 

Enkavi G., Javanainen M., Kulig W., Róg T., Vattulainen I. 2019. Multiscale simulations of biological membranes: The challenge to understand biological phenomena in a living substance. Chem. Rev. 119 (9), 5607–5774.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kinnun J.J., Bolmatov D., Lavrentovich M.O., Katsaras J. 2020. Lateral heterogeneity and domain formation in cellular membranes. Chem. Phys. Lipids. 232 104976.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kure J.L., Andersen C.B., Mortensen K.I., Wiseman P.W., Arnspang E.C. 2020. Revealing plasma membrane nano-domains with diffusion analysis methods. Membranes. 10 (11), 314.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phillips R., Ursell T., Wiggins P., Sens P. 2009. Emerging roles for lipids in shaping membrane-protein function. Nature. 459 (7245), 379–385.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bocharov E.V., Mineev K.S., Pavlov K.V., Akimov S.A., Kuznetsov A.S., Efremov R.G., Arseniev A.S. 2017. Helix-helix interactions in membrane domains of bitopic proteins: Specificity and role of lipid environment. Biochim. Biophys. Acta. 1859 (4), 561–576.

Vanni S., Hirose H., Barelli H., Antonny B., Gautier R. 2014. A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment. Nat. Commun. 5 (1), 4916.

Article  CAS  PubMed  Google Scholar 

Sharma S., Lindau M. 2017. t-SNARE transmembrane domain clustering modulates lipid organization and membrane curvature. J. Am. Chem. Soc. 139 (51), 18 440–18 443.

Article  Google Scholar 

Schmid F. 2017. Physical mechanisms of micro- and nanodomain formation in multicomponent lipid membranes. Biochim. Biophys. Acta. 1859 (4), 509–528.

Polyansky A.A., Volynsky P.E., Arseniev A.S., Efremov R.G. 2009. Adaptation of a membrane-active peptide to heterogeneous environment. Ii. The role of mosaic nature of the membrane surface. J. Phys. Chem. B. 113 (4), 1120–1126.

Article  CAS  PubMed  Google Scholar 

Agmo Hernández V., Karlsson G., Edwards K. 2011. Intrinsic heterogeneity in liposome suspensions caused by the dynamic spontaneous formation of hydrophobic active sites in lipid membranes. Langmuir. 27 (8), 4873–4883.

Article  PubMed  Google Scholar 

de Wit G., Danial J.S., Kukura P., Wallace M.I. 2015. Dynamic label-free imaging of lipid nanodomains. Proc. Natl. Acad. Sci. USA. 112 (40), 12299–12303.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yano Y., Hanashima S., Tsuchikawa H., Yasuda T., Slotte J.P., London E., Murata M. 2020. Sphingomyelins and ent-sphingomyelins form homophilic nano-subdomains within liquid ordered domains. Biophys. J. 119 (3), 539–552.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Efremov R.G. 2021. Dynamic “molecular portraits” of biomembranes drawn by their lateral nanoscale inhomogeneities. Int. J. Mol. Sci. 22 (12), 6250.

Article  PubMed  PubMed Central  Google Scholar 

Boggs J.M. 1980. Intermolecular hydrogen bonding between lipids: Influence on organization and function of lipids in membranes. Can. J. Biochem. 58 (10), 755–770.

Article  CAS  PubMed  Google Scholar 

Efremov R.G. 2019. Dielectric-dependent strength of interlipid hydrogen bonding in biomembranes: Model case study. J. Chem. Inf. Model. 59 (6), 2765–2775.

Article  CAS  PubMed  Google Scholar 

Marrink S.J., Risselada H.J., Yefimov S., Tieleman D.P., de Vries A.H. 2007. The MARTINI force field:  Coarse grained model for biomolecular simulations. J. Phys. Chem. B. 111 (27), 7812–7824.

Article  CAS  PubMed  Google Scholar 

Polyansky A.A., Ramaswamy R., Volynsky P.E., Sbalzarini I.F., Marrink S.J., Efremov R.G. 2010. Antimicrobial peptides induce growth of phosphatidylglycerol domains in a model bacterial membrane. J. Phys. Chem. Lett. 1 (20), 3108–3111.

Article  CAS  Google Scholar 

Epand R.F., Maloy W.L., Ramamoorthy A., Epand R.M. 2010. Probing the “charge cluster mechanism” in amphipathic helical cationic antimicrobial peptides. Biochemistry. 49 (19), 4076–4084.

留言 (0)

沒有登入
gif