Evolutionary Choice between Cholesterol and Ergosterol

Mouritsen O.G., Zuckermann M.J. 2004. What’s so special about cholesterol? Lipids. 39, 1101–1113.

Article  CAS  PubMed  Google Scholar 

Miao L., Nielsen M., Thewalt J., Ipsen J. H., Bloom M., Zuckermann M.J., Mouritsen O.G. 2002. From lanosterol to cholesterol: Structural evolution and differential effects on lipid bilayers. Biophys. J. 82, 1429–1444.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Staneva G., Chachaty C., Wolf C., Quinn P.J. 2010. Comparison of the liquid-ordered bilayer phases containing cholesterol or 7-dehydrocholesterol in modeling Smith–Lemli–Opitz syndrome. J. Lip. Res. 51, 1810–1822.

Article  CAS  Google Scholar 

Dupont S., Lemetais G., Ferreira T., Cayot P., Gervais P., Beney L. 2012. Ergosterol biosynthesis: A fungal pathway for life on land? Evolution. 66, 2961–2968.

Article  CAS  PubMed  Google Scholar 

Böcking T., Barrow K.D., Netting A.G., Chilcott T.C., Coster H.G., Höfer M. 2000. Effects of singlet oxygen on membrane sterols in the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 267, 1607–1618.

Article  PubMed  Google Scholar 

Fuller N., Rand R.P. 2001. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys. J. 81, 243–254.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kollmitzer B., Heftberger P., Rappolt M., Pabst G. 2013. Monolayer spontaneous curvature of raft-forming membrane lipids. Soft Matter. 9, 10 877–10 884.

Article  Google Scholar 

Tazawa K., Yamazaki M. 2023. Effect of monolayer spontaneous curvature on constant tension-induced pore formation in lipid bilayers. J. Chem. Phys. 158, 081101.

Article  CAS  PubMed  Google Scholar 

Chernomordik L.V., Melikyan G.B., Dubrovina N.I., Abidor I.G., Chizmadzhev Y.A. 1984. Solvent-free bilayers from squalene solutions of phospholipids. Bioelectrochem. Bioenerg. 12, 155–166.

Article  CAS  Google Scholar 

Rice A., Zimmerberg J., Pastor R.W. 2023. Initiation and evolution of pores formed by influenza fusion peptides probed by lysolipid inclusion. Biophys. J. 122, 1018–1032.

Article  CAS  PubMed  Google Scholar 

Neto A.J., Cordeiro R.M. 2016. Molecular simulations of the effects of phospholipid and cholesterol peroxidation on lipid membrane properties. Biochim. Biophys. Acta. 1858, 2191–2198.

Article  CAS  PubMed  Google Scholar 

Karpunin D.V., Akimov S.A., Frolov V.A. 2005. Pore formation in lipid membranes containing lysolipids and cholesterol. Biol. Membranes. 22, 429–432.

CAS  Google Scholar 

Dupont S., Fleurat-Lessard P., Cruz R.G., Lafarge C., Grangeteau C., Yahou F., Gerbeau-Pissot P., Abrahão Júnior O., Gervais P., Simon-Plas F., Cayot P., Beney L. 2021. Antioxidant properties of ergosterol and its role in yeast resistance to oxidation. Antioxidants. 10, 1024.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li Y., Ran Q., Duan Q., Jin J., Wang Y., Yu L., Wang C., Zhu Z., Chen X., Weng X., Li Z., Wang J., Wu Q., Wang H., Tian H., Song S., Shan Z., Zhai Z., Qin H., Chen S., Fang L., Yin H., Zhou H., Jiang X., Wang P. 2024. 7-Dehydrocholesterol dictates ferroptosis sensitivity. Nature. 626, 411–418.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Porter F.D. 2008. Smith–Lemli–Opitz syndrome: Pathogenesis, diagnosis and management. Eur. J. Human Genetics. 16, 535–541.

Article  CAS  Google Scholar 

Kono Y., Ishibashi Y., Fukuda S., Higuchi T., Tani M. 2023. Simultaneous structural replacement of the sphingoid long-chain base and sterol in budding yeast. FEBS J. 290, 5605–5627.

Article  CAS  PubMed  Google Scholar 

Wiseman H. 1993. Vitamin D is a membrane antioxidant. Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett. 326, 285–288.

Article  CAS  PubMed  Google Scholar 

Wiseman H., Cannon M., Arnstein H.R., Halliwel B. 1990. Mechanism of inhibition of lipid peroxidation by tamoxifen and 4-hydroxytamoxifen introduced into liposomes: Similarity to cholesterol and ergosterol. FEBS Lett. 274, 107–110.

Article  CAS  PubMed  Google Scholar 

Bagiński M., Tempczyk A., Borowski E. 1989. Comparative conformational analysis of cholesterol and ergosterol by molecular mechanics. Eur. Biophys. J. 17, 159–166.

Article  PubMed  Google Scholar 

Melo M.N., Ingólfsson H.I., Marrink S.J. 2015. Parameters for Martini sterols and hopanoids based on a virtual-site description. J. Chem. Phys. 143, 243152.

Article  CAS  PubMed  Google Scholar 

Galván-Hernández A., Kobayashi N., Hernández-Cobos J., Antillón A., Nakabayashi S., Ortega-Blake I. 2020. Morphology and dynamics of domains in ergosterol or cholesterol containing membranes. Biochim. Biophys. Acta. 1862, 183101.

Article  Google Scholar 

Henriksen J., Rowat A.C., Ipsen J.H. 2004. Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity. Eur. Biophys. J. 33, 732–741.

Article  CAS  PubMed  Google Scholar 

Kohl L., Gull K. 1998. Molecular architecture of the trypanosome cytoskeleton. Mol. Biochem. Parasitol. 93, 1–9.

Article  CAS  PubMed  Google Scholar 

Allen C.L., Goulding D., Field M.C. 2003. Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO J. 22, 4991–5002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johannes L., Lamaze C. 2002. Clathrin-dependent or not: Is it still the question? Traffic. 3, 443–451.

Article  CAS  PubMed  Google Scholar 

Simons K., Ikonen E. 1997. Functional rafts in cell membranes. Nature. 387, 569–572.

Article  CAS  PubMed  Google Scholar 

Frallicciardi J., Melcr J., Siginou P., Marrink S.J., Poolman B. 2022. Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nat. Commun. 13, 1605.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Staneva G., Osipenko D.S., Galimzyanov T.R., Pavlov K.V., Akimov S.A. 2016. Metabolic precursor of cholesterol causes formation of chained aggregates of liquid-ordered domains. Langmuir. 32, 1591–1600.

Article  CAS  PubMed  Google Scholar 

Montañés F.M., Pascual-Ahuir A., Proft M. 2011. Repression of ergosterol biosynthesis is essential for stress resistance and is mediated by the Hog1 MAP kinase and the Mot3 and Rox1 transcription factors. Mol. Microbiol. 79, 1008–1023.

Article  PubMed  Google Scholar 

Sokolov S.S., Popova M.M., Pohl P., Horner A., Akimov S.A., Kireeva N.A., Knorre D.A., Batishchev O.V., Severin F.F. 2022. Structural role of plasma membrane sterols in osmotic stress tolerance of yeast Saccharomyces cerevisiae. Membranes. 12, 1278.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif