Mouritsen O.G., Zuckermann M.J. 2004. What’s so special about cholesterol? Lipids. 39, 1101–1113.
Article CAS PubMed Google Scholar
Miao L., Nielsen M., Thewalt J., Ipsen J. H., Bloom M., Zuckermann M.J., Mouritsen O.G. 2002. From lanosterol to cholesterol: Structural evolution and differential effects on lipid bilayers. Biophys. J. 82, 1429–1444.
Article CAS PubMed PubMed Central Google Scholar
Staneva G., Chachaty C., Wolf C., Quinn P.J. 2010. Comparison of the liquid-ordered bilayer phases containing cholesterol or 7-dehydrocholesterol in modeling Smith–Lemli–Opitz syndrome. J. Lip. Res. 51, 1810–1822.
Dupont S., Lemetais G., Ferreira T., Cayot P., Gervais P., Beney L. 2012. Ergosterol biosynthesis: A fungal pathway for life on land? Evolution. 66, 2961–2968.
Article CAS PubMed Google Scholar
Böcking T., Barrow K.D., Netting A.G., Chilcott T.C., Coster H.G., Höfer M. 2000. Effects of singlet oxygen on membrane sterols in the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 267, 1607–1618.
Fuller N., Rand R.P. 2001. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys. J. 81, 243–254.
Article CAS PubMed PubMed Central Google Scholar
Kollmitzer B., Heftberger P., Rappolt M., Pabst G. 2013. Monolayer spontaneous curvature of raft-forming membrane lipids. Soft Matter. 9, 10 877–10 884.
Tazawa K., Yamazaki M. 2023. Effect of monolayer spontaneous curvature on constant tension-induced pore formation in lipid bilayers. J. Chem. Phys. 158, 081101.
Article CAS PubMed Google Scholar
Chernomordik L.V., Melikyan G.B., Dubrovina N.I., Abidor I.G., Chizmadzhev Y.A. 1984. Solvent-free bilayers from squalene solutions of phospholipids. Bioelectrochem. Bioenerg. 12, 155–166.
Rice A., Zimmerberg J., Pastor R.W. 2023. Initiation and evolution of pores formed by influenza fusion peptides probed by lysolipid inclusion. Biophys. J. 122, 1018–1032.
Article CAS PubMed Google Scholar
Neto A.J., Cordeiro R.M. 2016. Molecular simulations of the effects of phospholipid and cholesterol peroxidation on lipid membrane properties. Biochim. Biophys. Acta. 1858, 2191–2198.
Article CAS PubMed Google Scholar
Karpunin D.V., Akimov S.A., Frolov V.A. 2005. Pore formation in lipid membranes containing lysolipids and cholesterol. Biol. Membranes. 22, 429–432.
Dupont S., Fleurat-Lessard P., Cruz R.G., Lafarge C., Grangeteau C., Yahou F., Gerbeau-Pissot P., Abrahão Júnior O., Gervais P., Simon-Plas F., Cayot P., Beney L. 2021. Antioxidant properties of ergosterol and its role in yeast resistance to oxidation. Antioxidants. 10, 1024.
Article CAS PubMed PubMed Central Google Scholar
Li Y., Ran Q., Duan Q., Jin J., Wang Y., Yu L., Wang C., Zhu Z., Chen X., Weng X., Li Z., Wang J., Wu Q., Wang H., Tian H., Song S., Shan Z., Zhai Z., Qin H., Chen S., Fang L., Yin H., Zhou H., Jiang X., Wang P. 2024. 7-Dehydrocholesterol dictates ferroptosis sensitivity. Nature. 626, 411–418.
Article CAS PubMed PubMed Central Google Scholar
Porter F.D. 2008. Smith–Lemli–Opitz syndrome: Pathogenesis, diagnosis and management. Eur. J. Human Genetics. 16, 535–541.
Kono Y., Ishibashi Y., Fukuda S., Higuchi T., Tani M. 2023. Simultaneous structural replacement of the sphingoid long-chain base and sterol in budding yeast. FEBS J. 290, 5605–5627.
Article CAS PubMed Google Scholar
Wiseman H. 1993. Vitamin D is a membrane antioxidant. Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett. 326, 285–288.
Article CAS PubMed Google Scholar
Wiseman H., Cannon M., Arnstein H.R., Halliwel B. 1990. Mechanism of inhibition of lipid peroxidation by tamoxifen and 4-hydroxytamoxifen introduced into liposomes: Similarity to cholesterol and ergosterol. FEBS Lett. 274, 107–110.
Article CAS PubMed Google Scholar
Bagiński M., Tempczyk A., Borowski E. 1989. Comparative conformational analysis of cholesterol and ergosterol by molecular mechanics. Eur. Biophys. J. 17, 159–166.
Melo M.N., Ingólfsson H.I., Marrink S.J. 2015. Parameters for Martini sterols and hopanoids based on a virtual-site description. J. Chem. Phys. 143, 243152.
Article CAS PubMed Google Scholar
Galván-Hernández A., Kobayashi N., Hernández-Cobos J., Antillón A., Nakabayashi S., Ortega-Blake I. 2020. Morphology and dynamics of domains in ergosterol or cholesterol containing membranes. Biochim. Biophys. Acta. 1862, 183101.
Henriksen J., Rowat A.C., Ipsen J.H. 2004. Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity. Eur. Biophys. J. 33, 732–741.
Article CAS PubMed Google Scholar
Kohl L., Gull K. 1998. Molecular architecture of the trypanosome cytoskeleton. Mol. Biochem. Parasitol. 93, 1–9.
Article CAS PubMed Google Scholar
Allen C.L., Goulding D., Field M.C. 2003. Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO J. 22, 4991–5002.
Article CAS PubMed PubMed Central Google Scholar
Johannes L., Lamaze C. 2002. Clathrin-dependent or not: Is it still the question? Traffic. 3, 443–451.
Article CAS PubMed Google Scholar
Simons K., Ikonen E. 1997. Functional rafts in cell membranes. Nature. 387, 569–572.
Article CAS PubMed Google Scholar
Frallicciardi J., Melcr J., Siginou P., Marrink S.J., Poolman B. 2022. Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nat. Commun. 13, 1605.
Article CAS PubMed PubMed Central Google Scholar
Staneva G., Osipenko D.S., Galimzyanov T.R., Pavlov K.V., Akimov S.A. 2016. Metabolic precursor of cholesterol causes formation of chained aggregates of liquid-ordered domains. Langmuir. 32, 1591–1600.
Article CAS PubMed Google Scholar
Montañés F.M., Pascual-Ahuir A., Proft M. 2011. Repression of ergosterol biosynthesis is essential for stress resistance and is mediated by the Hog1 MAP kinase and the Mot3 and Rox1 transcription factors. Mol. Microbiol. 79, 1008–1023.
Sokolov S.S., Popova M.M., Pohl P., Horner A., Akimov S.A., Kireeva N.A., Knorre D.A., Batishchev O.V., Severin F.F. 2022. Structural role of plasma membrane sterols in osmotic stress tolerance of yeast Saccharomyces cerevisiae. Membranes. 12, 1278.
留言 (0)