In vitro Chondrogenic Induction Promotes the Expression Level of IL-10 via the TGF-β/SMAD and Canonical Wnt/β-catenin Signaling Pathways in Exosomes Secreted by Human Adipose Tissue-derived Mesenchymal Stem Cells

Liu, Y., Ma, Y., Zhang, J., Yuan, Y., & Wang, J. (2019). Exosomes: a novel therapeutic agent for cartilage and bone tissue regeneration. Dose-Response, 17(4), https://doi.org/10.1177/1559325819892702

Toh, W.S. et al. (2016). MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment. in Seminars in Cell & Developmental Biology. Elsevier. https://doi.org/10.1016/j.semcdb.2016.11.008

Krishnan, Y., & Grodzinsky, A. J. (2018). Cartilage diseases. Matrix Biology, 71-72, 51–69. https://doi.org/10.1016/j.matbio.2018.05.005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malekpour, K., Hazrati, A., Zahar, M., Markov, A., Zekiy, A. O., Navashenaq, J. G., Roshangar, L., & Ahmadi, M. (2022). The potential use of mesenchymal stem cells and their derived exosomes for orthopedic diseases treatment. Stem Cell Reviews and Reports, 18(3), 933–951. https://doi.org/10.1007/s12015-021-10185-z.

Article  CAS  PubMed  Google Scholar 

Goh, D., Yang, Y., Lee, E.H., Hui, J., & Yang, Z. (2023). Managing the heterogeneity of mesenchymal stem cells for cartilage regenerative therapy: a review. Bioengineering, 10(3), https://doi.org/10.3390/bioengineering10030355.

Ng, C. Y., Chai, J. Y., Foo, J. B., Mohamad Yahaya, N. H., Yang, Y., Ng, M. H., & Law, J. X. (2021). Potential of exosomes as cell-free therapy in articular cartilage regeneration: a review. International Journal of Nanomedicine, 16, 6749–6781. https://doi.org/10.2147/IJN.S327059.

Article  PubMed  PubMed Central  Google Scholar 

Yao, Y. et al. (2022). Exosomes as potential functional nanomaterials for tissue engineering. Advanced Healthcare Materials, 12(16), 2201989, https://doi.org/10.1002/adhm.202201989.

Bei, H. P., Hung, P. M., Yeung, H. L., Wang, S., & Zhao, X. (2021). Bone‐a‐petite: engineering exosomes towards bone, osteochondral, and cartilage repair. Small, 17(50), 2101741 https://doi.org/10.1002/smll.202101741.

Article  CAS  Google Scholar 

Zhang, T., Wen, F., Wu, Y., Goh, G. S., Ge, Z., Tan, L. P., Hui, J. H., & Yang, Z. (2015). Cross-talk between TGF-beta/SMAD and integrin signaling pathways in regulating hypertrophy of mesenchymal stem cell chondrogenesis under deferral dynamic compression. Biomaterials, 38, 72–85. https://doi.org/10.1016/j.biomaterials.2014.10.010.

Article  CAS  PubMed  Google Scholar 

Vail, D. J., Somoza, R. A., & Caplan, A. I. (2022). MicroRNA regulation of bone marrow mesenchymal stem cell chondrogenesis: toward articular cartilage. Tissue Engineering Part A, 28(5-6), 254–269. https://doi.org/10.1089/ten.tea.2021.0112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Green, J. D., Tollemar, V., Dougherty, M., Yan, Z., Yin, L., Ye, J., Collier, Z., Mohammed, M. K., Haydon, R. C., Luu, H. H., Kang, R., Lee, M. J., Ho, S. H., He, T. C., Shi, L. L., & Athiviraham, A. (2015). Multifaceted signaling regulators of chondrogenesis: Implications in cartilage regeneration and tissue engineering. Genes & Diseases, 2(4), 307–327. https://doi.org/10.1016/j.gendis.2015.09.003.

Article  Google Scholar 

Xia, P. et al. (2017). TGF-β1-induced chondrogenesis of bone marrow mesenchymal stem cells is promoted by low-intensity pulsed ultrasound through the integrin-mTOR signaling pathway. Stem Cell Research & Therapy, 8, 1–11. https://doi.org/10.1186/s13287-017-0733-9.

Article  CAS  Google Scholar 

Barter, M. J., Tselepi, M., Gómez, R., Woods, S., Hui, W., Smith, G. R., Shanley, D. P., Clark, I. M., & Young, D. A. (2015). Genome-wide microRNA and gene analysis of mesenchymal stem cell chondrogenesis identifies an essential role and multiple targets for miR-140-5p. Stem Cells, 33(11), 3266–3280. https://doi.org/10.1002/stem.2093.

Article  CAS  PubMed  Google Scholar 

Tsai, T.-L., Manner, P., & Li, W.-J. (2013). Regulation of mesenchymal stem cell chondrogenesis by glucose through protein kinase C/transforming growth factor signaling. Osteoarthritis and Cartilage, 21(2), 368–376. https://doi.org/10.1016/j.joca.2012.11.001.

Article  PubMed  Google Scholar 

Ruiz, M., Maumus, M., Fonteneau, G., Pers, Y. M., Ferreira, R., Dagneaux, L., Delfour, C., Houard, X., Berenbaum, F., Rannou, F., Jorgensen, C., & Noël, D. (2019). TGFβi is involved in the chondrogenic differentiation of mesenchymal stem cells and is dysregulated in osteoarthritis. Osteoarthritis and Cartilage, 27(3), 493–503. https://doi.org/10.1016/j.joca.2018.11.005.

Article  CAS  PubMed  Google Scholar 

Pattappa, G., Johnstone, B., Zellner, J., Docheva, D., & Angele, P. (2019). The importance of physioxia in mesenchymal stem cell chondrogenesis and the mechanisms controlling its response. International Journal of Molecular Sciences, 20(3), 484 https://doi.org/10.3390/ijms20030484.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, X., Han, Y., Li, G., Zhang, Y., Wang, J., & Feng, C. (2023). Role of Wnt signaling pathway in joint development and cartilage degeneration. Frontiers in Cell and Developmental Biology, 11, 1181619 https://doi.org/10.3389/fcell.2023.1181619.

Article  PubMed  PubMed Central  Google Scholar 

van Helvoort, E. M., van der Heijden, E., van Roon, J., Eijkelkamp, N., & Mastbergen, S. C. (2022). The role of interleukin-4 and interleukin-10 in osteoarthritic joint disease: a systematic narrative review. Cartilage, 13(2), https://doi.org/10.1177/19476035221098167.

Behrendt, P., Feldheim, M., Preusse-Prange, A., Weitkamp, J. T., Haake, M., Eglin, D., Rolauffs, B., Fay, J., Seekamp, A., Grodzinsky, A. J., & Kurz, B. (2018). Chondrogenic potential of IL-10 in mechanically injured cartilage and cellularized collagen ACI grafts. Osteoarthritis Cartilage, 26(2), 264–275. https://doi.org/10.1016/j.joca.2017.11.007.

Article  CAS  PubMed  Google Scholar 

John, T., Müller, R. D., Oberholzer, A., Zreiqat, H., Kohl, B., Ertel, W., Hostmann, A., Tschoeke, S. K., & Schulze-Tanzil, G. (2007). Interleukin-10 modulates pro-apoptotic effects of TNF-alpha in human articular chondrocytes in vitro. Cytokine, 40(3), 226–34. https://doi.org/10.1016/j.cyto.2007.10.002.

Article  CAS  PubMed  Google Scholar 

Semerci Sevimli, T., Sevimli, M., Qomi Ekenel, E., Altuğ Tasa, B., Nur Soykan, M., Demir Güçlüer, Z., İnan, U., Uysal, O., Güneş Bağış, S., Çemrek, F., & Eker Sarıboyacı, A. (2023). Comparison of exosomes secreted by synovial fluid-derived mesenchymal stem cells and adipose tissue-derived mesenchymal stem cells in culture for microRNA-127-5p expression during chondrogenesis. Gene, 865, https://doi.org/10.1016/j.gene.2023.147337.

Kim, J. A., Choi, H. K., Kim, T. M., Leem, S. H., & Oh, I. H. (2015). Regulation of mesenchymal stromal cells through fine tuning of canonical Wnt signaling. Stem cell research, 14(3), 356–368. https://doi.org/10.1016/j.scr.2015.02.007.

Article  CAS  PubMed  Google Scholar 

Uysal, O., Erybeh, H., Canbek, M., Ekenel, E. Q., Gunes, S., Büyükköroğlu, G., Semerci Sevimli, T., Cemrek, F., & Sariboyaci, A. E. (2024). Stem cell-based or cell-free gene therapy in chondrocyte regeneration: synovial fluid-derived mesenchymal stem cell exosomes. Current Molecular Medicine, 24(7), 906–919. https://doi.org/10.2174/0115665240266016231014081916.

Article  CAS  PubMed  Google Scholar 

Campos, Y., Almirall, A., Fuentes, G., Bloem, H. L., Kaijzel, E. L., & Cruz, L. J. (2019). Tissue engineering: an alternative to repair cartilage. Tissue Engineering Part B: Reviews, 25(4), 357–373. https://doi.org/10.2174/0115665240266016231014081916.

Article  CAS  PubMed  Google Scholar 

Fellows, C. R., Matta, C., Zakany, R., Khan, I. M., & Mobasheri, A. (2016). Adipose, bone marrow and synovial joint-derived mesenchymal stem cells for cartilage repair. Frontiers in Genetics, 7, 213 https://doi.org/10.3389/fgene.2016.00213.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amsar, R. M., Wijaya, C. H., Ana, I. D., Hidajah, A. C., Notobroto, H. B., Kencana Wungu, T. D., & Barlian, A. (2022). Extracellular vesicles: a promising cell-free therapy for cartilage repair. Future Science, 8(2), 774 https://doi.org/10.2144/fsoa-2021-0096.

Article  CAS  Google Scholar 

Bornes, T. D., Adesida, A. B., & Jomha, N. M. (2014). Mesenchymal stem cells in the treatment of traumatic articular cartilage defects: a comprehensive review. Arthritis Research & Therapy, 16(5), 1–19. https://doi.org/10.1186/s13075-014-0432-1.

Article  CAS  Google Scholar 

Kim, G. B., Seo, M. S., Park, W. T., & Lee, G. W. (2020). Bone marrow aspirate concentrate: its uses in osteoarthritis. International Journal of Molecular Sciences, 21(9), 3224 https://doi.org/10.3390/ijms21093224.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jo, C. H., Lee, Y. G., Shin, W. H., Kim, H., Chai, J. W., Jeong, E. C., Kim, J. E., Shim, H., Shin, J. S., Shin, I. S., Ra, J. C., Oh, S., & Yoon, K. S. (2014). Intra‐articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof‐of‐concept clinical trial. Stem Cells, 32(5), 1254–1266. https://doi.org/10.1002/stem.1634.

Article  CAS  PubMed  Google Scholar 

Meng, H. Y.-H., Lu, V., & Khan, W. (2021). Adipose tissue-derived mesenchymal stem cells as a potential restorative treatment for cartilage defects: a PRISMA review and meta-analysis. Pharmaceuticals, 14(12), https://doi.org/10.3390/ph14121280.

Tang, Y., Zhou, Y., & Li, H.-J. (2021). Advances in mesenchymal stem cell exosomes: a review. Stem Cell Research & Therapy, 12(1), 1–12. https://doi.org/10.1186/s13287-021-02138-7.

Article  Google Scholar 

Kim, Y. G., Park, U., Park, B. J., & Kim, K. (2019). Exosome-mediated bidirectional signaling between mesenchymal stem cells and chondrocytes for enhanced chondrogenesis. Biotechnology and Bioprocess Engineering, 24, 734–744

留言 (0)

沒有登入
gif