Banerjee, S., & Banerjee, S. (2022). Metal-based complexes as potential anti-cancer agents. Anti-Cancer Agents in Medicinal Chemistry, 22(15), 2684–2707. https://doi.org/10.2174/1871520622666220331085144.
Article CAS PubMed Google Scholar
Desoize, B., & Madoulet, C. (2002). Particular aspects of platinum compounds used at present in cancer treatment. Critical Reviews in Oncology/Hematology, 42(3), 317–325. https://doi.org/10.1016/S1040-8428(01)00219-0.
Mandal, A. A., Upadhyay, A., Mandal, A., Nayak, M., K, M. S., Mukherjee, S., & Banerjee, S. (2024). Visible-light-responsive novel Ru(II)-metallo-antibiotics with potential antibiofilm and antibacterial activity. ACS Applied Materials & Interfaces, 16(22), 28118–28133. https://doi.org/10.1021/acsami.4c02979.
Ferraro, M. G., Piccolo, M., Misso, G., Santamaria, R., & Irace, C. (2022). Bioactivity and development of small non-platinum metal-based chemotherapeutics. Pharmaceutics, 14(5), 954. https://doi.org/10.3390/pharmaceutics14050954.
Article CAS PubMed PubMed Central Google Scholar
Simpson, P. V., Desai, N. M., Casari, I., Massi, M., & Falasca, M. (2019). Metal-based antitumor compounds: beyond cisplatin. Future Medicinal Chemistry, 11(2), 119–135. https://doi.org/10.4155/fmc-2018-0248.
Article CAS PubMed Google Scholar
Jin, G., Zhao, Z., Chakraborty, T., Mandal, A., Roy, A., Roy, S., & Guo, Z. (2020). Decrypting the molecular mechanistic pathways delineating the chemotherapeutic potential of ruthenium-phloretin complex in colon carcinoma correlated with the oxidative status and increased apoptotic events. Oxidative Medicine and Cellular Longevity, 2020, 1–24. https://doi.org/10.1155/2020/7690845.
Sawkmie, M., Banothu, V., Verma, A. K., Paul, A. K., Krajewski, S., Kaminsky, W., & Kollipara, M. R. (2023). Cyclopentadienyl and indenyl ruthenium(II) complexes containing diazafluorenone derivative ligands: Syntheses, characterization, antibacterial and cytotoxicity studies. Journal of Organometallic Chemistry, 1001, 122876. https://doi.org/10.1016/j.jorganchem.2023.122876.
Coverdale, J. P. C., Laroiya-McCarron, T., & Romero-Canelón, I. (2019). Designing ruthenium anticancer drugs: what have we learnt from the key drug candidates? Inorganics, 7(3), 31 https://doi.org/10.3390/inorganics7030031.
Lee, S. Y., Kim, C. Y., & Nam, T.-G. (2020). Ruthenium complexes as anticancer agents: a brief history and perspectives. Drug Design, Development and Therapy, 14, 5375–5392. https://doi.org/10.2147/DDDT.S275007.
Article CAS PubMed PubMed Central Google Scholar
Alessio, E., & Messori, L. (2019). NAMI-A and KP1019/1339, two iconic ruthenium anticancer drug candidates face-to-face: a case story in medicinal inorganic chemistry. Molecules, 24(10), 1995. https://doi.org/10.3390/molecules24101995.
Article CAS PubMed PubMed Central Google Scholar
Malik, S., Muhammad, K., & Waheed, Y. (2023). Emerging applications of nanotechnology in healthcare and medicine. Molecules, 28(18), 6624 https://doi.org/10.3390/molecules28186624.
Article CAS PubMed PubMed Central Google Scholar
Peetla, C., & Labhasetwar, V. (2009). Effect of molecular structure of cationic surfactants on biophysical interactions of surfactant-modified nanoparticles with a model membrane and cellular uptake. Langmuir, 25(4), 2369–2377. https://doi.org/10.1021/la803361y.
Article CAS PubMed PubMed Central Google Scholar
Alghamdi, M. A., Fallica, A. N., Virzì, N., Kesharwani, P., Pittalà, V., & Greish, K. (2022). The promise of nanotechnology in personalized medicine. Journal of Personalized Medicine, 12(5), 673. https://doi.org/10.3390/jpm12050673.
Article PubMed PubMed Central Google Scholar
Madamsetty, V. S., Paul, M. K., Mukherjee, A., & Mukherjee, S. (2020). Functionalization of nanomaterials and their application in melanoma cancer theranostics. ACS Biomaterials Science & Engineering, 6(1), 167–181. https://doi.org/10.1021/acsbiomaterials.9b01426.
Nogueira, D. R., Carmen Morán, M., Mitjans, M., Martínez, V., Pérez, L., & Pilar Vinardell, M. (2013). New cationic nanovesicular systems containing lysine-based surfactants for topical administration: Toxicity assessment using representative skin cell lines. European Journal of Pharmaceutics and Biopharmaceutics, 83(1), 33–43. https://doi.org/10.1016/j.ejpb.2012.09.007.
Article CAS PubMed Google Scholar
Zakharova, L. Y., Pashirova, T. N., Doktorovova, S., Fernandes, A. R., Sanchez-Lopez, E., Silva, A. M., & Souto, E. B. (2019). Cationic surfactants: self-assembly, structure-activity correlation and their biological applications. International Journal of Molecular Sciences, 20(22), 5534. https://doi.org/10.3390/ijms20225534.
Article CAS PubMed PubMed Central Google Scholar
Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicologic Pathology, 35(4), 495–516. https://doi.org/10.1080/01926230701320337.
Article CAS PubMed PubMed Central Google Scholar
Saikumar, P., & Venkatachalam, M. A. (2009). Apoptosis and Cell Death (pp. 29–40). https://doi.org/10.1007/978-0-387-89626-7_4
Chaudhry, G.-S., Md Akim, A., Sung, Y. Y., & Sifzizul, T. M. T. (2022). Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.842376
Popolin, C. P., Reis, J. P. B., Becceneri, A. B., Graminha, A. E., Almeida, M. A. P., Corrêa, R. S., & Cominetti, M. R. (2017). Cytotoxicity and anti-tumor effects of new ruthenium complexes on triple negative breast cancer cells. PLOS ONE, 12(9), e0183275. https://doi.org/10.1371/journal.pone.0183275.
Article CAS PubMed PubMed Central Google Scholar
Ajaykumar, C. (2021). Overview on the Side Effects of Doxorubicin. In Advances in Precision Medicine Oncology. (IntechOpen. https://doi.org/10.5772/intechopen.94896
Kamińska, K., & Cudnoch-Jędrzejewska, A. (2023). A review on the neurotoxic effects of doxorubicin. Neurotoxicity Research, 41(5), 383–397. https://doi.org/10.1007/s12640-023-00652-5.
Article CAS PubMed PubMed Central Google Scholar
Sun, Q., Li, Y., Shi, H., Wang, Y., Zhang, J., & Zhang, Q. (2021). Ruthenium complexes as promising candidates against lung cancer. Molecules, 26(15), 4389. https://doi.org/10.3390/molecules26154389.
Article CAS PubMed PubMed Central Google Scholar
Levy, O., Brennen, W. N., Han, E., Rosen, D. M., Musabeyezu, J., Safaee, H., & Karp, J. M. (2016). A prodrug-doped cellular Trojan Horse for the potential treatment of prostate cancer. Biomaterials, 91, 140–150. https://doi.org/10.1016/j.biomaterials.2016.03.023.
Article CAS PubMed PubMed Central Google Scholar
Chowdhury, S. R., Mukherjee, S., Das, S., Patra, C. R., & Iyer, P. K. (2017). Multifunctional (3-in-1) cancer theranostics applications of hydroxyquinoline-appended polyfluorene nanoparticles. Chem. Sci., 8(11), 7566–7575. https://doi.org/10.1039/C7SC03321D.
Article CAS PubMed PubMed Central Google Scholar
Cao, W., Zheng, W., & Chen, T. (2015). Ruthenium polypyridyl complex inhibits growth and metastasis of breast cancer cells by suppressing FAK signaling with enhancement of TRAIL-induced apoptosis. Scientific reports, 5, 9157 https://doi.org/10.1038/srep09157.
Article CAS PubMed PubMed Central Google Scholar
Lenis-Rojas, O., Roma-Rodrigues, C., Fernandes, A., Carvalho, A., Cordeiro, S., Guerra-Varela, J., & Fernández, J. (2021). Evaluation of the in vitro and in vivo efficacy of ruthenium polypyridyl compounds against breast cancer. International Journal of Molecular Sciences, 22(16), 8916. https://doi.org/10.3390/ijms22168916.
Article CAS PubMed PubMed Central Google Scholar
Liang, L., Yang, Y., Liu, H., Yuan, F., Yuan, Y., Li, W., & Liu, Y. (2023). Synthesis, characterization, anticancer efficacy evaluation of ruthenium(II) and iridium(III) polypyridyl complexes toward A549 cells. JBIC Journal of Biological Inorganic Chemistry, 28(4), 421–437. https://doi.org/10.1007/s00775-023-01997-0.
留言 (0)