Computational Model of Complex Calcium Dynamics: Store Operated Ca2+ Channels and Mitochondrial Associated Membranes in Pancreatic Acinar Cells

Berridge, M., Lipp, P. & Bootman, M. (1999). Calcium signalling. Current Biology, 9, R157–159. https://doi.org/10.1016/s0960-9822(99)80101-8.

Article  CAS  PubMed  Google Scholar 

Pallagi, P., Madácsy, T., Varga, Á. & Maléth, J. (2020). Intracellular Ca2+ signalling in the pathogenesis of acute pancreatitis: Recent advances and translational perspectives. International Journal of Molecular Sciences, 21, 4005. https://doi.org/10.3390/ijms21114005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gerasimenko, J. V., & Gerasimenko, O. V. (2023). The role of Ca2+ signalling in the pathology of exocrine pancreas. Cell Calcium, 112, 102740 https://doi.org/10.1016/j.ceca.2023.102740.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gerasimenko, J. V., Flowerdew, S. E., Voronina, S. G., Sukhomlin, T. K., Tepikin, A. V., Petersen, O. H. & Gerasimenko, O. V. (2006). Bile acids induce Ca2+ release from both the endoplasmic reticulum and acidic intracellular calcium stores through activation of inositol trisphosphate receptors and ryanodine receptors. Journal of Biological Chemistry, 281, 40154–40163. https://doi.org/10.1074/jbc.M606402200.

Article  CAS  PubMed  Google Scholar 

Putney, J. W.(2011). The physiological function of store-operated calcium entry. Neurochemical Research, 36, 1157–1165. https://doi.org/10.1007/s11064-010-0383-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng, S., Zhou, L., Ma, G., Zhang, T., Liu, J., Li, J., Nguyen, N. T., Zhang, X., Li, W., Nwokonko, R., Zhou, Y., Zhao, F., Liu, J., Huang, Y., Gill, D. L. & Wang, Y. (2018). Calcium store refilling and STIM activation in STIM- and Orai-deficient cell lines. Pflügers Archiv - European Journal of Physiology, 470, 1555–1567. https://doi.org/10.1007/s00424-018-2165-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lunz, V., Romanin, C., & Frischauf, I. (2019). STIM1 activation of Orai1. Cell Calcium, 77, 29–38. https://doi.org/10.1016/j.ceca.2018.11.009.

Article  CAS  PubMed  Google Scholar 

Wang, Y., Deng, X., Zhou, Y., Hendron, E., Mancarella, S., Ritchie, M. F., Tang, X. D., Baba, Y., Kurosaki, T., Mori, Y., Soboloff, J. & Gill, D. L. (2009). STIM protein coupling in the activation of Orai channels. Proceedings of the National Academy of Sciences of the United States of America, 106, 7391–7396. https://doi.org/10.1073/pnas.0900293106.

Article  PubMed  PubMed Central  Google Scholar 

Petersen, O. H.(2009). Ca2+ signaling in pancreatic acinar cells: physiology and pathophysiology. The Brazilian Journal of Medical and Biological Research, 42, 9–16. https://doi.org/10.1590/S0100-879X2009000100003.

Article  CAS  PubMed  Google Scholar 

Putney, J. W., Steinckwich-Besançon, N., Numaga-Tomita, T., Davis, F. M., Desai, P. N., D’Agostin, D. M., Wu, S. & Bird, G. S. (2017). The functions of store-operated calcium channels. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1864, 900–906. https://doi.org/10.1016/j.bbamcr.2016.11.028.

Article  CAS  PubMed  Google Scholar 

Rosado, J. A. ed (2016). Calcium Entry Pathways in Non-excitable Cells. Cham: Springer International Publishing.

Google Scholar 

De Young, G. W. & Keizer, J. (1992). A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proceedings of the National Academy of Sciences of the United States of America, 89, 9895–9899. https://doi.org/10.1073/pnas.89.20.9895.

Article  PubMed  PubMed Central  Google Scholar 

Atri, A., Amundson, J., Clapham, D. & Sneyd, J. (1993). A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophysical Journal, 65, 1727–1739. https://doi.org/10.1016/S0006-3495(93)81191-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen, P., & Larter, R. (1995). Chaos in intracellular Ca2+ oscillations in a new model for non-excitable cells. Cell Calcium, 17, 225–232. https://doi.org/10.1016/0143-4160(95)90037-3.

Article  CAS  PubMed  Google Scholar 

LeBeau, A. P., Yule, D. I., Groblewski, G. E. & Sneyd, J. (1999). Agonist-dependent phosphorylation of the inositol 1,4,5-trisphosphate receptor. The Journal of General Physiology, 113, 851–872. https://doi.org/10.1085/jgp.113.6.851.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giovannucci, D. R., Bruce, J. I. E., Straub, S. V., Arreola, J., Sneyd, J., Shuttleworth, T. J. & Yule, D. I. (2002). Cytosolic Ca(2+) and Ca(2+)-activated Cl(-) current dynamics: insights from two functionally distinct mouse exocrine cells. The Journal of Physiology, 540, 469–484. https://doi.org/10.1113/jphysiol.2001.013453.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sneyd, J., Tsaneva-Atanasova, K., Bruce, J. I. E., Straub, S. V., Giovannucci, D. R. & Yule, D. I. (2003). A model of calcium waves in pancreatic and parotid acinar cells. Biophysical Journal, 85, 1392–1405. https://doi.org/10.1016/S0006-3495(03)74572-X.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simpson, D., Kirk, V. & Sneyd, J. (2005). Complex oscillations and waves of calcium in pancreatic acinar cells. Physica D: Nonlinear Phenomena, 200, 303–324. https://doi.org/10.1016/j.physd.2004.11.006.

Article  CAS  Google Scholar 

Ventura, A. C. & Sneyd, J. (2006). Calcium oscillations and waves generated by multiple release mechanisms in pancreatic acinar cells. Bulletin of Mathematical Biology, 68, 2205–2231. https://doi.org/10.1007/s11538-006-9101-0.

Article  PubMed  Google Scholar 

Manhas, N., Sneyd, J. & Pardasani, K. R. (2014). Modelling the transition from simple to complex Ca2+ oscillations in pancreatic acinar cells. Journal of Biosciences, 39, 463–484. https://doi.org/10.1007/s12038-014-9430-3.

Article  CAS  PubMed  Google Scholar 

Manhas, N. & Pardasani, K. R. (2014). Modelling mechanism of calcium oscillations in pancreatic acinar cells. Journal of Bioenergetics and Biomembranes, 46, 403–420. https://doi.org/10.1007/s10863-014-9561-0.

Article  CAS  PubMed  Google Scholar 

Tsaneva-Atanasova, K., Yule, D. I. & Sneyd, J. (2005). Calcium oscillations in a triplet of pancreatic acinar cells. Biophysical Journal, 88, 1535–1551. https://doi.org/10.1529/biophysj.104.047357.

Article  CAS  PubMed  Google Scholar 

Manhas, N. & Anbazhagan, N. (2021). A mathematical model of intricate calcium dynamics and modulation of calcium signalling by mitochondria in pancreatic acinar cells. Chaos Solitons Fractals, 145, 110741 https://doi.org/10.1016/j.chaos.2021.110741.

Article  Google Scholar 

Bertram, R., Gram Pedersen, M., Luciani, D. S. & Sherman, A. (2006). A simplified model for mitochondrial ATP production. Journal of Theoretical Biology, 243, 575–586. https://doi.org/10.1016/j.jtbi.2006.07.019.

Article  CAS  PubMed  Google Scholar 

Magnus, G. & Keizer, J. (1998). Model of β-cell mitochondrial calcium handling and electrical activity. I. Cytoplasmic variables. The American Journal of Physiology-Cell Physiology, 274, C1158–C1173. https://doi.org/10.1152/ajpcell.1998.274.4.C1158.

Article  CAS  Google Scholar 

Magnus, G. & Keizer, J. (1998). Model of β-cell mitochondrial calcium handling and electrical activity. II. Mitochondrial variables. The American Journal of Physiology-Cell Physiology, 274, C1174–C1184. https://doi.org/10.1152/ajpcell.1998.274.4.C1174.

Article  CAS  Google Scholar 

Han, J. M. & Periwal, V. (2019). A mathematical model of calcium dynamics: Obesity and mitochondria-associated ER membranes. PLOS Computational Biology, 15, e1006661. https://doi.org/10.1371/journal.pcbi.1006661.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif