Molecular Modeling Studies of Similar Molecules to Selective Estrogen Receptor Degrader Elacestrant as Inhibitors of SARS-COV-2

Robinson, P. C. et al. (2022). COVID-19 therapeutics: Challenges and directions for the future. Proceedings of the National Academy of Sciences of the United States of America, 119(15), e2119893119

Article  PubMed  PubMed Central  Google Scholar 

Abd El-Aziz, T. M., & Stockand, J. D. (2020). Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2)—an update on the status. Infection, Genetics and Evolution, 83, 104327

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scavone, C., et al. (2020). Current pharmacological treatments for COVID-19: What’s next? British Journal of Pharmacology, 177(21), 4813–4824

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ebenezer, O., et al. (2022). Medicinal plants with anti-SARS-CoV activity repurposing for treatment of COVID-19 infection: A systematic review and meta-analysis. Acta Pharmaceutica, 72(2), 199–224

Article  CAS  PubMed  Google Scholar 

Zhang, L., et al. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 368(6489), 409–412

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suárez, D., & Díaz, N. (2020). SARS-CoV-2 main protease: A molecular dynamics study. Journal of Chemical Information and Modeleling, 60(12), 5815–5831

Article  Google Scholar 

Ullrich, S., & Nitsche, C. (2020). The SARS-CoV-2 main protease as drug target. Bioorganic & Medicinal Chemical Letters, 30(17), 127377

Article  CAS  Google Scholar 

Mengist, H. M., Dilnessa, T., & Jin, T. (2021). Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Frontier in Chemistry, 9, 622898

Article  CAS  Google Scholar 

Scior, T., et al. (2012). Recognizing pitfalls in virtual screening: A critical review. Journal of Chemical Information and Modeling, 52(4), 867–881

Article  CAS  PubMed  Google Scholar 

Kumar, A., & Zhang, K. Y. (2015). Hierarchical virtual screening approaches in small molecule drug discovery. Methods, 71, 26–37

Article  CAS  PubMed  Google Scholar 

Gimeno, A., et al. (2019). The light and dark sides of virtual screening: What is there to know? International Journal of Molecular Sciences, 20(6), 1375

Ugbe, F. A., et al. (2024). Computational evaluation of the inhibitory potential of some urea, thiourea, and selenourea derivatives of diselenides against leishmaniasis: 2D-QSAR, pharmacokinetics, molecular docking, and molecular dynamics simulation. Journal of Molecular Structure, 1302, 137473

Article  CAS  Google Scholar 

Ugbe, F. A., et al. (2023) Cheminformatics-based discovery of new organoselenium compounds with potential for the treatment of cutaneous and visceral leishmaniasis. Journal of Biomolecular Structure Dynamics, 1–24

El Bairi, K., et al. (2020). Repurposing anticancer drugs for the management of COVID-19. European Journal of Cancer, 141, 40–61

Article  CAS  PubMed  PubMed Central  Google Scholar 

Costa, B. & Vale, N. (2021). A review of repurposed cancer drugs in clinical trials for potential treatment of COVID-19. Pharmaceutics, 13(6), 815

Bidard, F. C., et al. (2022). Elacestrant (oral selective estrogen receptor degrader) versus standard endocrine therapy for estrogen receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer: results from the randomized phase III EMERALD trial. Journal of Clinical Oncology, 40(28), 3246–3256

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bardia, A., et al. (2021). Phase I study of elacestrant (RAD1901), a novel selective estrogen receptor degrader, in ER-positive, HER2-negative advanced breast cancer. Journal of Clinical Oncology, 39(12), 1360–1370

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, IJ. & & Foloppe, N. (2010). Drug-like bioactive structures and conformational coverage with the LigPrep/ConfGen suite: comparison to programs MOE and catalyst. Journal of Chemical Information and Modeling, 50(5), 822–839.

Article  CAS  PubMed  Google Scholar 

Anand, K., et al. (2002). Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. The EMBO Journal, 21(13), 3213–3224

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin, Z., et al. (2020). Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293

Article  CAS  PubMed  Google Scholar 

Friesner, RA. et al. (2004). Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749.

Article  CAS  PubMed  Google Scholar 

Bowers, K. J., et al. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. ACM Press

Ebenezer, O., et al. (2022). Unveiling of pyrimidindinones as potential anti-norovirus agents—a pharmacoinformatic-based approach. Molecules, 27(2), 380

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ebenezer, O., et al. (2023). A molecular docking study reveals that short peptides induce conformational changes in the structure of human tubulin isotypes αβI, αβII, αβIII and αβIV. Journal of Functional Biomaterials, 14(3), 135

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duffy, E. M., & Jorgensen, W. L. (2000). Prediction of properties from simulations: free energies of solvation in hexadecane, octanol, and water. Journal of the American Chemical Society, 122(12), 2878–2888

Article  CAS  Google Scholar 

Lipinski, C. A., et al. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1-3), 3–26

Article  CAS  PubMed  Google Scholar 

Hefti, F. F. (2008). Requirements for a lead compound to become a clinical candidate. BMC Neuroscience, 9 Suppl 3(Suppl 3), S7

Article  PubMed  Google Scholar 

Banerjee, R., Perera, L., & Tillekeratne, L. M. V. (2021). Potential SARS-CoV-2 main protease inhibitors. Drug Discovery Today, 26(3), 804–816

Article  CAS  PubMed  Google Scholar 

La Monica, G., et al. (2022). Targeting SARS-CoV-2 main protease for treatment of COVID-19: covalent inhibitors structure-activity relationship insights and evolution perspectives. Journal of Medicinal Chemistry, 65(19), 12500–12534

Article  PubMed  PubMed Central  Google Scholar 

Dai, W., et al. (2020). Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 368(6497), 1331–1335

Article  CAS  PubMed  Google Scholar 

Ramos-Guzmán, C. A., Ruiz-Pernía, J. J., & Tuñón, I. (2021). Multiscale simulations of SARS-CoV-2 3CL protease inhibition with aldehyde derivatives. role of protein and inhibitor conformational changes in the reaction mechanism. ACS Catalysis, 11(7), 4157–4168

Article  PubMed  Google Scholar 

Ferraz, W. R., et al. (2020). Ligand and structure-based virtual screening applied to the SARS-CoV-2 main protease: an in silico repurposing study. Future Medicinal Chemistry, 12(20), 1815–1828

Article  CAS  PubMed  Google Scholar 

Gahlawat, A., et al. (2020). Structure-based virtual screening to discover potential lead molecules for the SARS-CoV-2 main protease. J Chem Inf Model, 60(12), 5781–5793

Article  CAS  PubMed  Google Scholar 

Bhowmick, S., et al. (2021). Structure-based identification of SARS-CoV-2 main protease inhibitors from anti-viral specific chemical libraries: an exhaustive computational screening approach. Molecular Diversity, 25(3), 1979–1997

Article  CAS 

留言 (0)

沒有登入
gif