New insights into the stromal interaction molecule 2 function and its impact on the immunomodulation of tumor microenvironment

Hanahan D, Monje M. Cancer hallmarks intersect with neuroscience in the tumor microenvironment. Cancer Cell. 2023;41(3):573–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang H et al. The role of Calcium Signaling in Melanoma. Int J Mol Sci, 2022. 23(3).

Xu M, et al. A temporal examination of calcium signaling in cancer- from tumorigenesis, to immune evasion, and metastasis. Cell Biosci. 2018;8:25.

Article  PubMed  PubMed Central  Google Scholar 

Gross S, et al. Ca(2+) as a therapeutic target in cancer. Adv Cancer Res. 2020;148:233–317.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yada Y et al. STIM-mediated calcium influx regulates maintenance and selection of germinal center B cells. J Exp Med, 2024. 221(1).

Berna-Erro A et al. The Ca2 + Sensor STIM in Human diseases. Biomolecules, 2023. 13(9).

Chen YF, Chen LH, Shen MR. The distinct role of STIM1 and STIM2 in the regulation of store-operated ca(2+) entry and cellular function. J Cell Physiol. 2019;234(6):8727–39.

Article  CAS  PubMed  Google Scholar 

Stathopulos PB, Zheng L, Ikura M. Stromal interaction molecule (STIM) 1 and STIM2 calcium sensing regions exhibit distinct unfolding and oligomerization kinetics. J Biol Chem. 2009;284(2):728–32.

Article  CAS  PubMed  Google Scholar 

Sharma A, Ramena GT, Elble RC. Advances in intracellular Calcium Signaling reveal untapped targets for Cancer Therapy. Biomedicines, 2021. 9(9).

Crul T, Maléth J. Endoplasmic reticulum-plasma membrane contact sites as an Organizing Principle for compartmentalized calcium and cAMP signaling. Int J Mol Sci, 2021. 22(9).

Cohen HA, et al. The SOAR of STIM1 interacts with plasma membrane lipids to form ER-PM contact sites. Cell Rep. 2023;42(3):112238.

Article  CAS  PubMed  Google Scholar 

López E, et al. Unraveling STIM2 function. J Physiol Biochem. 2012;68(4):619–33.

Article  PubMed  Google Scholar 

Novello MJ, et al. Structural elements of stromal interaction molecule function. Cell Calcium. 2018;73:88–94.

Article  CAS  PubMed  Google Scholar 

Zheng S, et al. Identification of molecular determinants that govern distinct STIM2 activation dynamics. PLoS Biol. 2018;16(11):e2006898.

Article  PubMed  PubMed Central  Google Scholar 

Bassett JJ, et al. ORAI1 regulates sustained cytosolic free calcium fluctuations during breast cancer cell apoptosis and apoptotic resistance via a STIM1 independent pathway. FASEB J. 2022;36(1):e22108.

Article  CAS  PubMed  Google Scholar 

Serwach K, et al. STIM2 regulates NMDA receptor endocytosis that is induced by short-term NMDA receptor overactivation in cortical neurons. Cell Mol Life Sci. 2023;80(12):368.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shalygin A, et al. STIM1 and STIM2 proteins differently regulate endogenous store-operated channels in HEK293 cells. J Biol Chem. 2015;290(8):4717–27.

Article  CAS  PubMed  Google Scholar 

Grabmayr H, Romanin C, Fahrner M. STIM Proteins: an ever-expanding family. Int J Mol Sci, 2020. 22(1).

Knapp ML, et al. A longer isoform of Stim1 is a negative SOCE regulator but increases cAMP-modulated NFAT signaling. EMBO Rep. 2022;23(3):e53135.

Article  CAS  PubMed  Google Scholar 

Wasilewska I, et al. Lack of Stim2 affects Vision-Dependent Behavior and Sensitivity to Hypoxia. Zebrafish. 2023;20(4):146–59.

Article  CAS  PubMed  Google Scholar 

Nelson HA, Roe MW. Molecular physiology and pathophysiology of stromal interaction molecules. Exp Biol Med (Maywood). 2018;243(5):451–72.

Article  CAS  PubMed  Google Scholar 

Gupta RK et al. Knockout of stim2a increases calcium oscillations in neurons and induces hyperactive-like phenotype in zebrafish larvae. Int J Mol Sci, 2020. 21(17).

Humer C, Romanin C. Functional communication between IP(3)R and STIM2 at subthreshold stimuli is a critical checkpoint for initiation of SOCE. Cell Calcium. 2022;104:102574.

Article  CAS  PubMed  Google Scholar 

Subedi KP, et al. STIM2 induces activated conformation of STIM1 to control Orai1 function in ER-PM junctions. Cell Rep. 2018;23(2):522–34.

Article  CAS  PubMed  Google Scholar 

Ong HL, et al. STIM2 enhances receptor-stimulated ca(2)(+) signaling by promoting recruitment of STIM1 to the endoplasmic reticulum-plasma membrane junctions. Sci Signal. 2015;8(359):ra3.

Article  PubMed  Google Scholar 

Nelson HA et al. Interplay between ER ca(2+) binding proteins, STIM1 and STIM2, is required for store-operated ca(2+) entry. Int J Mol Sci, 2018. 19(5).

Huang TY et al. STIM1 knockout enhances PDGF-Mediated ca(2+) signaling through Upregulation of the PDGFR(-)PLCgamma(-)STIM2 Cascade. Int J Mol Sci, 2018. 19(6).

Brandman O, et al. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2 + levels. Cell. 2007;131(7):1327–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung S, Zhang M, Stathopulos PB. The 2beta splice variation alters the structure and function of the Stromal Interaction Molecule coiled-Coil domains. Int J Mol Sci, 2018. 19(11).

Miederer AM, et al. A STIM2 splice variant negatively regulates store-operated calcium entry. Nat Commun. 2015;6:6899.

Article  CAS  PubMed  Google Scholar 

Wasilewska I et al. stim2b knockout induces hyperactivity and susceptibility to seizures in zebrafish larvae. Cells, 2020. 9(5).

Kim KM, Rana A, Park CY. Orai1 inhibitor STIM2beta regulates myogenesis by controlling SOCE dependent transcriptional factors. Sci Rep. 2019;9(1):10794.

Article  PubMed  PubMed Central  Google Scholar 

Graham SJ, Dziadek MA, Johnstone LS. A cytosolic STIM2 preprotein created by signal peptide inefficiency activates ORAI1 in a store-independent manner. J Biol Chem. 2011;286(18):16174–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Skobeleva K et al. The STIM1/2-Regulated Calcium Homeostasis Is Impaired in Hippocampal Neurons of the 5xFAD Mouse Model of Alzheimer’s Disease. Int J Mol Sci, 2022. 23(23).

Shalygin A, et al. Role of STIM2 and orai proteins in regulating TRPC1 channel activity upon calcium store depletion. Cell Calcium. 2021;97:102432.

Article  CAS  PubMed  Google Scholar 

Sobradillo D, et al. A reciprocal shift in transient receptor potential channel 1 (TRPC1) and stromal interaction molecule 2 (STIM2) contributes to Ca2 + remodeling and cancer hallmarks in colorectal carcinoma cells. J Biol Chem. 2014;289(42):28765–82.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shim JA, et al. NFAT1 and NFkappaB regulates expression of the common gamma-chain cytokine receptor in activated T cells. Cell Commun Signal. 2023;21(1):309.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Emrich SM, et al. Cross-talk between N-terminal and C-terminal domains in stromal interaction molecule 2 (STIM2) determines enhanced STIM2 sensitivity. J Biol Chem. 2019;294(16):6318–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Duan QJ, Shen J. Resveratrol pretreatment improves mitochondrial function and alleviates myocardial ischemia-reperfusion injury by up-regulating Mi R-20b-5p to inhibit STIM2. Zhongguo Zhong Yao Za Zhi. 2022;47(18):4987–95.

PubMed  Google Scholar 

Rao W, et al. Downregulation of STIM2 improves neuronal survival after traumatic brain injury by alleviating calcium overload and mitochondrial dysfunction. Biochim Biophys Acta. 2015;1852(11):2402–13.

Article  CAS  PubMed  Google Scholar 

Tu CC, Wan BY, Zeng Y. STIM2 knockdown protects against ischemia/reperfusion injury through reducing mitochondrial calcium overload and preserving mitochondrial function. Life Sci. 2020;247:116560.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif