Effects of minute oscillation stretching training on muscle and tendon stiffness and walking capability in people with type 2 diabetes

American Diabetes Association (2021) Glycemic targets: standards of medical care in diabetes—2021. Diabetes Care 44:73-S84. https://doi.org/10.2337/dc21-S006

Article  Google Scholar 

Arampatzis A, Karamanidis K, De Monte G et al (2004) Differences between measured and resultant joint moments during voluntary and artificially elicited isometric knee extension contractions. Clin Biomech 19:277–283. https://doi.org/10.1016/j.clinbiomech.2003.11.011

Article  Google Scholar 

Åstrand P-O, Rodahl K (1986) Textbook of work physiology: physiological bases of exercise. McGraw-Hill College

Google Scholar 

Bacchi E, Negri C, Zanolin ME, Milanese C, Faccioli N, Trombetta M, Zoppini G, Cevese A, Bonadonna RC, Schena F, Bonora E, Lanza M, Moghetti P (2012) Metabolic effects of aerobic training and resistance training in type 2 diabetic subjects. Diabetes Care 35:676–682. https://doi.org/10.2337/dc11-1655

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bacurau RFP, Monteiro GA, Ugrinowitsch C, Tricoli V, Cabral LF, Aoki MS (2009) Acute effect of a ballistic and a static stretching exercise bout on flexibility and maximal strength. J Strength Cond Res 23:304. https://doi.org/10.1519/JSC.0b013e3181874d55

Article  PubMed  Google Scholar 

Bakenecker P, Raiteri B, Hahn D (2019) Patella tendon moment arm function considerations for human vastus lateralis force estimates. J Biomech 86:225–231. https://doi.org/10.1016/j.jbiomech.2019.01.042

Article  PubMed  Google Scholar 

Bastien GJ, Willems PA, Schepens B, Heglund NC (2005) Effect of load and speed on the energetic cost of human walking. Eur J Appl Physiol 94:76–83. https://doi.org/10.1007/s00421-004-1286-z

Article  CAS  PubMed  Google Scholar 

Behm DG, Blazevich AJ, Kay AD, McHugh M (2016) Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review. Appl Physiol Nutr Metab 41:1–11. https://doi.org/10.1139/apnm-2015-0235

Article  PubMed  Google Scholar 

Birukov A, Cuadrat R, Polemiti E et al (2021) Advanced glycation end-products, measured as skin autofluorescence, associate with vascular stiffness in diabetic, pre-diabetic and normoglycemic individuals: a cross-sectional study. Cardiovasc Diabetol 20:110. https://doi.org/10.1186/s12933-021-01296-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bohm S, Mersmann F, Arampatzis A (2015) Human tendon adaptation in response to mechanical loading: a systematic review and meta-analysis of exercise intervention studies on healthy adults. Sports Med - Open 1:7. https://doi.org/10.1186/s40798-015-0009-9

Article  PubMed  PubMed Central  Google Scholar 

Borg E, Borg G, Larsson K et al (2010) An index for breathlessness and leg fatigue. Scand J Med Sci Sports 20:644–650. https://doi.org/10.1111/j.1600-0838.2009.00985.x

Article  CAS  PubMed  Google Scholar 

Bullard T, Ji M, An R et al (2019) A systematic review and meta-analysis of adherence to physical activity interventions among three chronic conditions: cancer, cardiovascular disease, and diabetes. BMC Public Health 19:636. https://doi.org/10.1186/s12889-019-6877-z

Article  PubMed  PubMed Central  Google Scholar 

Burner T, Gohr C, Mitton-Fitzgerald E, Rosenthal AK (2012) Hyperglycemia reduces proteoglycan levels in tendons. Connect Tissue Res 53:535–541. https://doi.org/10.3109/03008207.2012.710670

Article  CAS  PubMed  Google Scholar 

Caron N, Peyrot N, Caderby T et al (2018) Effect of type 2 diabetes on energy cost and preferred speed of walking. Eur J Appl Physiol 118:2331–2338. https://doi.org/10.1007/s00421-018-3959-z

Article  PubMed  Google Scholar 

Carrier DR, Anders C, Schilling N (2011) The musculoskeletal system of humans is not tuned to maximize the economy of locomotion. Proc Natl Acad Sci 108:18631–18636. https://doi.org/10.1073/pnas.1105277108

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cè E, Longo S, Rampichini S et al (2015) Stretch-induced changes in tension generation process and stiffness are not accompanied by alterations in muscle architecture of the middle and distal portions of the two gastrocnemii. J Electromyogr Kinesiol 25:469–478. https://doi.org/10.1016/j.jelekin.2015.03.001

Article  PubMed  Google Scholar 

Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, Horton ES, Castorino K, Tate DF (2016) Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care 39:2065–2079. https://doi.org/10.2337/dc16-1728

Article  PubMed  PubMed Central  Google Scholar 

Couppé C, Svensson RB, Kongsgaard M et al (2016) Human Achilles tendon glycation and function in diabetes. J Appl Physiol 120:130–137. https://doi.org/10.1152/japplphysiol.00547.2015

Article  CAS  PubMed  Google Scholar 

Dai J, Dai W, Li W-Q (2023) Trends in physical activity and sedentary time among US adults with diabetes: 2007–2020. Diabetes Metab Syndr Clin Res Rev 17:102874. https://doi.org/10.1016/j.dsx.2023.102874

Article  CAS  Google Scholar 

di Prampero PE (1986) The energy cost of human locomotion on land and in water. Int J Sports Med 7:55–72. https://doi.org/10.1055/s-2008-1025736

Article  PubMed  Google Scholar 

Fang X, Han Z, Kang Y et al (2024) Preliminary study on the evaluation of skeletal muscle damage in patients with diabetes mellitus using ultrasonic shear wave elastography. Altern Ther Health Med 30:314–317

PubMed  Google Scholar 

Farris DJ, Lichtwark GA (2016) UltraTrack: software for semi-automated tracking of muscle fascicles in sequences of B-mode ultrasound images. Comput Methods Programs Biomed 128:111–118. https://doi.org/10.1016/j.cmpb.2016.02.016

Article  PubMed  Google Scholar 

Farris DJ, Trewartha G, McGuigan MP (2012) The effects of a 30-min run on the mechanics of the human Achilles tendon. Eur J Appl Physiol 112:653–660. https://doi.org/10.1007/s00421-011-2019-8

Article  PubMed  Google Scholar 

Finni T, Komi PV, Lepola V (2001) In vivo muscle mechanics during locomotion depend on movement amplitude and contraction intensity. Eur J Appl Physiol 85:170–176. https://doi.org/10.1007/s004210100438

Article  CAS  PubMed  Google Scholar 

Franchi M, Fini M, Quaranta M, De Pasquale V, Raspanti M, Giavaresi G, Ottani V, Ruggeri A (2007) Crimp morphology in relaxed and stretched rat Achilles tendon. J Anat 210:1–7. https://doi.org/10.1111/j.1469-7580.2006.00666.x

Article  PubMed  PubMed Central  Google Scholar 

Guney A, Vatansever F, Karaman I, Kafadar IH, Oner M, Turk CY (2015) Biomechanical properties of Achilles tendon in diabetic vs. non-diabetic patients. Exp Clin Endocrinol Diabetes 123:428–432. https://doi.org/10.1055/s-0035-1549889

Article  CAS  PubMed  Google Scholar 

Hamner SR, Seth A, Delp SL (2010) Muscle contributions to propulsion and support during running. J Biomech 43:2709–2716. https://doi.org/10.1016/j.jbiomech.2010.06.025

Article  PubMed  PubMed Central  Google Scholar 

Hannah R, Folland JP (2015) Muscle-tendon unit stiffness does not independently affect voluntary explosive force production or muscle intrinsic contractile properties. Appl Physiol Nutr Metab 40:87–95. https://doi.org/10.1139/apnm-2014-0343

Article  PubMed  Google Scholar 

Hauraix H, Nordez A, Guilhem G et al (2015) In vivo maximal fascicle-shortening velocity during plantar flexion in humans. J Appl Physiol 119:1262–1271. https://doi.org/10.1152/japplphysiol.00542.2015

Article  CAS  PubMed  Google Scholar 

Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10:361–374. https://doi.org/10.1016/s1050-6411(00)00027-4

Article  CAS 

留言 (0)

沒有登入
gif