Muscle microvascular oxygen delivery limitations during the contraction phase of intermittent maximal effort contractions

Barcroft H, Dornhorst AC (1949) The blood flow through the human calf during rhythmic exercise. J Physiol 109:402–411

Article  PubMed  PubMed Central  CAS  Google Scholar 

Barstow TJ (2019) Understanding near infrared spectroscopy and its application to skeletal muscle research. J Appl Physiol 126:1360–1376. https://doi.org/10.1152/japplphysiol.00166.2018

Article  PubMed  CAS  Google Scholar 

Black MI, Jones AM, Blackwell JR et al (2017) Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains. J Appl Physiol 122:446–459. https://doi.org/10.1152/japplphysiol.00942.2016

Article  PubMed  CAS  Google Scholar 

Blain GM, Mangum TS, Sidhu SK et al (2016) Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans. J Physiol 594:5303–5315. https://doi.org/10.1113/JP272283

Article  PubMed  PubMed Central  CAS  Google Scholar 

Broxterman RM, Ade CJ, Wilcox SL et al (2014) Influence of duty cycle on the power-duration relationship: observations and potential mechanisms. Respir Physiol Neurobiol 192:102–111. https://doi.org/10.1016/j.resp.2013.11.010

Article  PubMed  CAS  Google Scholar 

Broxterman RM, Ade CJ, Craig JC et al (2015) Influence of blood flow occlusion on muscle oxygenation characteristics and the parameters of the power-duration relationship. J Appl Physiol 118:880–889. https://doi.org/10.1152/japplphysiol.00875.2014

Article  PubMed  CAS  Google Scholar 

Broxterman RM, Skiba PF, Craig JC et al (2016) W′ expenditure and reconstitution during severe intensity constant power exercise: mechanistic insight into the determinants of W′. Physiol Rep 4:e12856. https://doi.org/10.14814/phy2.12856

Article  PubMed  PubMed Central  Google Scholar 

Broxterman RM, Layec G, Hureau TJ et al (2017) Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue. J Appl Physiol 122:1208–1217. https://doi.org/10.1152/japplphysiol.01093.2016

Article  PubMed  PubMed Central  Google Scholar 

Burnley M (2009) Estimation of critical torque using intermittent isometric maximal voluntary contractions of the quadriceps in humans. J Appl Physiol 106:975–983. https://doi.org/10.1152/japplphysiol.91474.2008

Article  PubMed  Google Scholar 

Burnley M, Vanhatalo A, Jones AM (2012) Distinct profiles of neuromuscular fatigue during muscle contractions below and above the critical torque in humans. J Appl Physiol 113:215–223. https://doi.org/10.1152/japplphysiol.00022.2012

Article  PubMed  Google Scholar 

Craig JC, Vanhatalo A, Burnley M et al (2019) Chapter 8 - Critical power: possibly the most important fatigue threshold in exercise physiology. In: Zoladz JA (ed) Muscle and exercise physiology. Academic Press, pp 159–181

Google Scholar 

Drouin PJ, Forbes SPA, Liu T et al (2022) Muscle contraction force conforms to muscle oxygenation during constant-activation voluntary forearm exercise. Exp Physiol 107:1360–1374. https://doi.org/10.1113/EP090576

Article  PubMed  Google Scholar 

Ferreira LF, Lutjemeier BJ, Townsend DK, Barstow TJ (2006) Effects of pedal frequency on estimated muscle microvascular O2 extraction. Eur J Appl Physiol 96:558–563. https://doi.org/10.1007/s00421-005-0107-3

Article  PubMed  CAS  Google Scholar 

Folkow B, Gaskell P, Waaler BA (1970) Blood flow through limb muscles during heavy rhythmic exercise. Acta Physiol Scand 80:61–72. https://doi.org/10.1111/j.1748-1716.1970.tb04770.x

Article  PubMed  CAS  Google Scholar 

Grassi B, Pogliaghi S, Rampichini S et al (2003) Muscle oxygenation and pulmonary gas exchange kinetics during cycling exercise on-transitions in humans. J Appl Physiol 95:149–158. https://doi.org/10.1152/japplphysiol.00695.2002

Article  PubMed  Google Scholar 

Hammer SM, Alexander AM, Didier KD et al (2018) The noninvasive simultaneous measurement of tissue oxygenation and microvascular hemodynamics during incremental handgrip exercise. J Appl Physiol 124:604–614. https://doi.org/10.1152/japplphysiol.00815.2017

Article  PubMed  CAS  Google Scholar 

Hammer SM, Alexander AM, Didier KD et al (2020a) Limb blood flow and muscle oxygenation responses during handgrip exercise above vs. below critical force. Microvasc Res 131:104–112. https://doi.org/10.1016/j.mvr.2020.104002

Article  CAS  Google Scholar 

Hammer SM, Alexander AM, Didier KD, Barstow TJ (2020b) Influence of blood flow occlusion on muscular recruitment and fatigue during maximal-effort small muscle-mass exercise. J Physiol 598:4293–4306. https://doi.org/10.1113/JP279925

Article  PubMed  CAS  Google Scholar 

Hammer SM, Hammond ST, Parr SK et al (2021) Influence of muscular contraction on vascular conductance during exercise above versus below critical power. Respir Physiol Neurobiol 293:103718. https://doi.org/10.1016/j.resp.2021.103718

Article  PubMed  PubMed Central  Google Scholar 

Hammer SM, Sears KN, Montgomery TR et al (2023) Sex differences in muscle contraction-induced limb blood flow limitations. Eur J Appl Physiol. https://doi.org/10.1007/s00421-023-05339-5

Article  PubMed  Google Scholar 

Iannetta D, Okushima D, Inglis EC et al (2018) Blood flow occlusion-related O2 extraction “reserve” is present in different muscles of the quadriceps but greater in deeper regions after ramp-incremental test. J Appl Physiol 125:313–319. https://doi.org/10.1152/japplphysiol.00154.2018

Article  PubMed  CAS  Google Scholar 

Inglis EC, Iannetta D, Murias JM (2017) The plateau in the NIRS-derived [HHb] signal near the end of a ramp incremental test does not indicate the upper limit of O2 extraction in the vastus lateralis. Am J Physiol 313:R723–R729. https://doi.org/10.1152/ajpregu.00261.2017

Article  CAS  Google Scholar 

Inglis EC, Iannetta D, Murias JM (2019) Evaluating the NIRS-derived microvascular O2 extraction “reserve” in groups varying in sex and training status using leg blood flow occlusions. PLoS ONE 14:e0220192. https://doi.org/10.1371/journal.pone.0220192

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jones AM, Wilkerson DP, DiMenna F et al (2008) Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. Am J Physiol 294:R585–R593. https://doi.org/10.1152/ajpregu.00731.2007

Article  CAS  Google Scholar 

Kellawan JM, Bentley RF, Bravo MF et al (2014) Does oxygen delivery explain interindividual variation in forearm critical impulse? Physiol Rep 2:e12203. https://doi.org/10.14814/phy2.12203

Article  PubMed  PubMed Central  CAS  Google Scholar 

Koga S, Kano Y, Barstow TJ et al (2012) Kinetics of muscle deoxygenation and microvascular Po2 during contractions in rat: comparison of optical spectroscopy and phosphorescence-quenching techniques. J Appl Physiol 112:26–32. https://doi.org/10.1152/japplphysiol.00925.2011

Article  PubMed  CAS  Google Scholar 

Lutjemeier BJ, Miura A, Scheuermann BW et al (2005) Muscle contraction-blood flow interactions during upright knee extension exercise in humans. J Appl Physiol 98:1575–1583. https://doi.org/10.1152/japplphysiol.00219.2004

Article  PubMed  Google Scholar 

Okushima D, Poole DC, Barstow TJ et al (2016) Greater V̇O2peak is correlated with greater skeletal muscle deoxygenation amplitude and hemoglobin concentration within individual muscles during ramp-incremental cycle exercise. Physiol Rep 4:e13065. https://doi.org/10.14814/phy2.13065

Article  PubMed  PubMed Central  CAS  Google Scholar 

Poole D, Ward S, Gardner G, Whipp B (1988) Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics 31:1265–1279. https://doi.org/10.1080/00140138808966766

留言 (0)

沒有登入
gif