Batterson PM, Kirby BS, Hasselmann G, Feldmann A (2023) Muscle oxygen saturation rates coincide with lactate-based exercise thresholds. Eur J Appl Physiol. https://doi.org/10.1007/s00421-023-05238-9
Bellotti C, Calabria E, Capelli C, Pogliaghi S (2013) Determination of maximal lactate steady state in healthy adults: Can NIRS help? Medicine and Science in Sports and Exercise, 45(6), 1208–1216. Scopus. https://doi.org/10.1249/MSS.0b013e3182828ab2
Bini RR, Hoefelmann CP, Costa VP, Diefenthaeler F (2018) Reproducibility of upper leg EMG frequency content during cycling. J Sports Sci 36(5):485–491. https://doi.org/10.1080/02640414.2017.1318217
Boone J, Barstow TJ, Celie B, Prieur F, Bourgois J (2016) The interrelationship between muscle oxygenation, muscle activation, and pulmonary oxygen uptake to incremental ramp exercise: Influence of aerobic fitness. Appl Physiol Nutr Metab 41(1):55–62. https://doi.org/10.1139/apnm-2015-0261
Article CAS PubMed Google Scholar
Borges NR, Driller MW (2016) Wearable lactate threshold predicting device is valid and reliable in runners. J Strength Condition Res 30(8):2212–2218. https://doi.org/10.1519/JSC.0000000000001307
Caen K, Pogliaghi S, Lievens M, Vermeire K, Bourgois JG, Boone J (2021) Ramp vs step tests: Valid alternatives to determine the maximal lactate steady-state intensity? European J App Physiol 121(7):1899–1907. https://doi.org/10.1007/s00421-021-04620-9
Caen K, Bourgois JG, Stassijns E, Boone J (2022) A longitudinal study on the interchangeable use of whole-body and local exercise thresholds in cycling. Eur J Appl Physiol 122(7):1657–1670. https://doi.org/10.1007/s00421-022-04942-2
Article CAS PubMed PubMed Central Google Scholar
Calbet JA, Holmberg HC, Rosdahl H, van Hall G, Jensen-Urstad M, Saltin B (2005) Why do arms extract less oxygen than legs during exercise? Am J Physiol Regulatory, Integrative Comparative Physiol 289(5):R1448-1458. https://doi.org/10.1152/ajpregu.00824.2004
Cayot TE, Robinson SG, Davis LE, Bender PA, Thistlethwaite JR, Broeder CE, Lauver JD (2021) Estimating the lactate threshold using wireless near-infrared spectroscopy and threshold detection analyses. Int J Exercise Sci 14(4):284–294
Contreras-Briceño F, Espinosa-Ramirez M, Keim-Bagnara V, Carreño-Román M, Rodríguez-Villagra R, Villegas-Belmar F, Viscor G, Gabrielli L, Andía ME, Araneda OF, Hurtado DE (2022) Determination of the respiratory compensation point by detecting changes in intercostal muscles oxygenation by using near-infrared spectroscopy. Life 12(3):444. https://doi.org/10.3390/life12030444
Article PubMed PubMed Central Google Scholar
Craig JC, Broxterman RM, Wilcox SL, Chen C, Barstow TJ (2017) Effect of adipose tissue thickness, muscle site, and sex on near-infrared spectroscopy derived total-[hemoglobin + myoglobin]. J Appl Physiol 123(6):1571–1578. https://doi.org/10.1152/japplphysiol.00207.2017
Article CAS PubMed Google Scholar
Feldmann A, Ammann L, Gächter F, Zibung M, Erlacher D (2022) Muscle oxygen saturation breakpoints reflect ventilatory thresholds in both cycling and running. J Hum Kinet 83:87–97. https://doi.org/10.2478/hukin-2022-0054
Article PubMed PubMed Central Google Scholar
Fleitas-Paniagua PR, de Almeida Azevedo R, Trpcic M, Murias JM, Rogers B (2024) Combining near-infrared spectroscopy and heart rate variability derived thresholds to estimate the critical intensity of exercise. The J Strength Condition Res 38(1):e16. https://doi.org/10.1519/JSC.0000000000004597
Hermens, H., Freriks, B., Merletti, R., Stegeman, D., Blok, J., Rau, G., Klug, C., Hägg, G., Blok, W. J., & Hermens, H. (1999). European recommendations for surface electromyography: Results of the SENIAM Project. https://www.semanticscholar.org/paper/European-recommendations-for-surface-Results-of-the-Hermens-Freriks/1ab28b8afcb1216cab1b2f8da0de246c3d5ed6e8
Hug F, Dorel S (2009) Electromyographic analysis of pedaling: a review. J Electromyogr Kinesiol 19(2):182–198. https://doi.org/10.1016/j.jelekin.2007.10.010
Iannetta D, Qahtani A, Mattioni Maturana F, Murias JM (2017a) The near-infrared spectroscopy-derived deoxygenated haemoglobin breaking-point is a repeatable measure that demarcates exercise intensity domains. J Sci Med Sport 20(9):873–877. https://doi.org/10.1016/j.jsams.2017.01.237
Iannetta D, Qahtani A, Millet GY, Murias JM (2017b) Quadriceps muscles o2 extraction and emg breakpoints during a ramp incremental test. Front Physiol. https://doi.org/10.3389/fphys.2017.00686
Article PubMed PubMed Central Google Scholar
Iannetta D, de Almeida Azevedo R, Keir DA, Murias JM (2019) Establishing the V̇o2 versus constant-work-rate relationship from ramp-incremental exercise: Simple strategies for an unsolved problem. J Appl Physiol 127(6):1519–1527. https://doi.org/10.1152/japplphysiol.00508.2019
Article PubMed PubMed Central Google Scholar
Jamnick NA, Pettitt RW, Granata C, Pyne DB, Bishop DJ (2020) An examination and critique of current methods to determine exercise intensity. Sports Med 50(10):1729–1756. https://doi.org/10.1007/s40279-020-01322-8
Jones B, Parry D, Cooper CE (2018) Underwater near-infrared spectroscopy can measure training adaptations in adolescent swimmers. PeerJ 6:e4393. https://doi.org/10.7717/peerj.4393
Article CAS PubMed PubMed Central Google Scholar
Keir DA, Fontana FY, Robertson TC, Murias JM, Paterson DH, Kowalchuk JM, Pogliaghi S (2015a) exercise intensity thresholds: identifying the boundaries of sustainable performance. Med Sci Sports Exerc 47(9):1932–1940. https://doi.org/10.1249/MSS.0000000000000613
Keir DA, Fontana FY, Robertson TC, Murias JM, Paterson DH, Kowalchuk JM, Pogliaghi S (2015b) Exercise intensity thresholds: identifying the boundaries of sustainable performance. Med Sci Sports Exercise 47(9):1932–1940. https://doi.org/10.1249/MSS.0000000000000613
Mattu AT, MacInnis MJ, Doyle-Baker PK, Murias JM (2020) Effects of the menstrual and oral contraceptive cycle phases on microvascular reperfusion. Exp Physiol 105(1):184–191. https://doi.org/10.1113/EP088135
Article CAS PubMed Google Scholar
Murias JM, Spencer MD, Keir DA, Paterson DH (2013) Systemic and vastus lateralis muscle blood flow and O2 extraction during ramp incremental cycle exercise. Am J Physiol-Regulatory, Integrative Comp Physiol 304(9):R720–R725. https://doi.org/10.1152/ajpregu.00016.2013
Ozyener F, Whipp BJ, Ward SA (2012) The contribution of ‘resting’ body muscles to the slow component of pulmonary oxygen uptake during high-intensity cycling. J Sports Sci Med 11(4):759–767
PubMed PubMed Central Google Scholar
Park S, Caldwell GE (2021) Muscular activity patterns in 1-legged vs 2-legged pedaling. J Sport Health Sci 10(1):99–106. https://doi.org/10.1016/j.jshs.2020.01.003
Pataky TC (2010) Generalized n-dimensional biomechanical field analysis using statistical parametric mapping. J Biomech 43(10):1976–1982. https://doi.org/10.1016/j.jbiomech.2010.03.008
Paulauskas R, Nekriošius R, Dadelienė R, Sousa A, Figueira B (2022) Muscle oxygenation measured with near-infrared spectroscopy following different intermittent training protocols in a world-class kayaker—a case study. Sensors 22(21):8238. https://doi.org/10.3390/s22218238
Article PubMed PubMed Central Google Scholar
Perrey S, Ferrari M (2018) Muscle oximetry in sports science: a systematic review. Sports Med 48(3):597–616. https://doi.org/10.1007/s40279-017-0820-1
Perrey S, Quaresima V, Ferrari M (2024) Muscle oximetry in sports science: an updated systematic review. Sports Med. https://doi.org/10.1007/s40279-023-01987-x
Article PubMed PubMed Central Google Scholar
Possamai LT, Campos FD, Salvador PC, de Aguiar RA, Guglielmo LG, de Lucas RD, Caputo F, Turnes T (2020) Similar maximal oxygen uptake assessment from a step cycling incremental test and verification tests on the same or different day. App Physiol, Nutrition, Metabolism 45(4):357–361. https://doi.org/10.1139/apnm-2019-0405
留言 (0)