Tester, M. & Langridge, P. Breeding technologies to increase crop production in a changing world. Science 327, 818–822 (2010).
Article PubMed CAS Google Scholar
Qian, Q., Zhang, F. & Xin, Y. Yuan longping and hybrid rice research. Rice 14, 101 (2021).
Article PubMed PubMed Central Google Scholar
Normile, D. Crossing rice strains to keep Asia’s rice bowls brimming. Science 283, 313–313 (1999).
Jones, J. W. Hybrid vigor in rice1. Agron. J. 18, 423–428 (1926).
He, Q. et al. Hybrid Rice. Engineering 6, 967–973 (2020).
Fan, Y. & Zhang, Q. Genetic and molecular characterization of photoperiod and thermo-sensitive male sterility in rice. Plant Reprod. 31, 3–14 (2018).
Article PubMed CAS Google Scholar
Yu, J. et al. Two rice receptor-like kinases maintain male fertility under changing temperatures. Proc. Natl. Acad. Sci. USA 114, 12327–12332 (2017).
Article PubMed PubMed Central CAS Google Scholar
Chen, R. et al. Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility. Plant Cell 19, 847–861 (2007).
Article PubMed PubMed Central CAS Google Scholar
Wu, L. et al. A natural allele of OsMS1 responds to temperature changes and confers thermosensitive genic male sterility. Nat. Commun. 13, 2055 (2022).
Article PubMed PubMed Central CAS Google Scholar
Zhou, H. et al. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res. 22, 649–660 (2012).
Article PubMed PubMed Central CAS Google Scholar
Ding, J. et al. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc. Natl. Acad. Sci. USA 109, 2654–2659 (2012).
Article PubMed PubMed Central CAS Google Scholar
Teng, C. et al. Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize. Nat. Commun. 11, 2912 (2020).
Article PubMed PubMed Central CAS Google Scholar
Zhu, J. et al. Slowing development restores the fertility of thermo-sensitive male-sterile plant lines. Nat. Plants 6, 360–367 (2020).
Article PubMed CAS Google Scholar
Shi, Q. S. et al. A cellular mechanism underlying the restoration of thermo/photoperiod-sensitive genic male sterility. Mol. Plant 14, 2104–2114 (2021).
Article PubMed CAS Google Scholar
Peng, G. et al. The E3 ubiquitin ligase CSIT1 regulates critical sterility-inducing temperature by ribosome-associated quality control to safeguard two-line hybrid breeding in rice. Mol. Plant 16, 1695–1709 (2023).
Article PubMed CAS Google Scholar
Zhou, H. et al. RNase Z(S1) processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice. Nat. Commun. 5, 4884 (2014).
Article PubMed CAS Google Scholar
Liu, W. et al. Reproductive tissue-specific translatome of a rice thermo-sensitive genic male sterile line. J. Genet. Genomics 49, 624–635 (2022).
Article PubMed CAS Google Scholar
Li, J. et al. Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. J. Genet. Genomics 44, 465–468 (2017).
Article PubMed CAS Google Scholar
Yip, M. C. J., Savickas, S., Gygi, S. P. & Shao, S. ELAC1 repairs tRNAs cleaved during ribosome-associated quality control. Cell Rep. 30, 2106–2114 (2020).
Article PubMed PubMed Central CAS Google Scholar
Pinto, P. H. et al. ANGEL2 is a member of the CCR4 family of deadenylases with 2’,3’-cyclic phosphatase activity. Science 369, 524–530 (2020).
Article PubMed CAS Google Scholar
Yip, M. C. J. et al. Mechanism for recycling tRNAs on stalled ribosomes. Nat. Struct. Mol. Biol. 26, 343–349 (2019).
Article PubMed CAS Google Scholar
Li de la Sierra-Gallay, I., Mathy, N., Pellegrini, O. & Condon, C. Structure of the ubiquitous 3’ processing enzyme RNase Z bound to transfer RNA. Nat. Struct. Mol. Biol. 13, 376–377 (2006).
Kostelecky, B., Pohl, E., Vogel, A., Schilling, O. & Meyer-Klaucke, W. The crystal structure of the zinc phosphodiesterase from Escherichia coli provides insight into function and cooperativity of tRNase Z-family proteins. J. Bacteriol. 188, 1607–1614 (2006).
Article PubMed PubMed Central CAS Google Scholar
Ishii, R. et al. Crystal structure of the tRNA 3’ processing endoribonuclease tRNase Z from Thermotoga maritima. J. Biol. Chem. 280, 14138–14144 (2005).
Article PubMed CAS Google Scholar
Li de la Sierra-Gallay, I., Pellegrini, O. & Condon, C. Structural basis for substrate binding, cleavage and allostery in the tRNA maturase RNase Z. Nature 433, 657–661 (2005).
Gu, H. et al. A 5’ tRNA-Ala-derived small RNA regulates anti-fungal defense in plants. Sci. China Life Sci. 65, 1–15 (2022).
Article PubMed CAS Google Scholar
Tanaka, N., Meineke, B. & Shuman, S. RtcB, a novel RNA ligase, can catalyze tRNA splicing and HAC1 mRNA splicing in vivo. J. Biol. Chem. 286, 30253–30257 (2011).
Article PubMed PubMed Central CAS Google Scholar
Behrens, A., Rodschinka, G. & Nedialkova, D. D. High-resolution quantitative profiling of tRNA abundance and modification status in eukaryotes by mim-tRNAseq. Mol. Cell 81, 1802–1815 (2021).
Article PubMed PubMed Central CAS Google Scholar
Sakata, T. & Higashitani, A. Male sterility accompanied with abnormal anther development in plants – genes and environmental stresses with special reference to high temperature injury. Int. J. Plant Dev. Biol. 2, 42–51 (2008).
Dimitrova, L. N., Kuroha, K., Tatematsu, T. & Inada, T. Nascent peptide-dependent translation arrest leads to Not4p-mediated protein degradation by the proteasome. J. Biol. Chem. 284, 10343–10352 (2009).
Article PubMed PubMed Central Google Scholar
Letzring, D. P., Wolf, A. S., Brule, C. E. & Grayhack, E. J. Translation of CGA codon repeats in yeast involves quality control components and ribosomal protein L1. RNA 19, 1208–1217 (2013).
Article PubMed PubMed Central CAS Google Scholar
Gamble, C. E., Brule, C. E., Dean, K. M., Fields, S. & Grayhack, E. J. Adjacent codons act in concert to modulate translation efficiency in yeast. Cell 166, 679–690 (2016).
留言 (0)