Impaired 2′,3′-cyclic phosphate tRNA repair causes thermo-sensitive genic male sterility in rice

Tester, M. & Langridge, P. Breeding technologies to increase crop production in a changing world. Science 327, 818–822 (2010).

Article  PubMed  CAS  Google Scholar 

Qian, Q., Zhang, F. & Xin, Y. Yuan longping and hybrid rice research. Rice 14, 101 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Normile, D. Crossing rice strains to keep Asia’s rice bowls brimming. Science 283, 313–313 (1999).

Article  CAS  Google Scholar 

Jones, J. W. Hybrid vigor in rice1. Agron. J. 18, 423–428 (1926).

Article  Google Scholar 

He, Q. et al. Hybrid Rice. Engineering 6, 967–973 (2020).

Article  Google Scholar 

Fan, Y. & Zhang, Q. Genetic and molecular characterization of photoperiod and thermo-sensitive male sterility in rice. Plant Reprod. 31, 3–14 (2018).

Article  PubMed  CAS  Google Scholar 

Yu, J. et al. Two rice receptor-like kinases maintain male fertility under changing temperatures. Proc. Natl. Acad. Sci. USA 114, 12327–12332 (2017).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen, R. et al. Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility. Plant Cell 19, 847–861 (2007).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wu, L. et al. A natural allele of OsMS1 responds to temperature changes and confers thermosensitive genic male sterility. Nat. Commun. 13, 2055 (2022).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhou, H. et al. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res. 22, 649–660 (2012).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ding, J. et al. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc. Natl. Acad. Sci. USA 109, 2654–2659 (2012).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Teng, C. et al. Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize. Nat. Commun. 11, 2912 (2020).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhu, J. et al. Slowing development restores the fertility of thermo-sensitive male-sterile plant lines. Nat. Plants 6, 360–367 (2020).

Article  PubMed  CAS  Google Scholar 

Shi, Q. S. et al. A cellular mechanism underlying the restoration of thermo/photoperiod-sensitive genic male sterility. Mol. Plant 14, 2104–2114 (2021).

Article  PubMed  CAS  Google Scholar 

Peng, G. et al. The E3 ubiquitin ligase CSIT1 regulates critical sterility-inducing temperature by ribosome-associated quality control to safeguard two-line hybrid breeding in rice. Mol. Plant 16, 1695–1709 (2023).

Article  PubMed  CAS  Google Scholar 

Zhou, H. et al. RNase Z(S1) processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice. Nat. Commun. 5, 4884 (2014).

Article  PubMed  CAS  Google Scholar 

Liu, W. et al. Reproductive tissue-specific translatome of a rice thermo-sensitive genic male sterile line. J. Genet. Genomics 49, 624–635 (2022).

Article  PubMed  CAS  Google Scholar 

Li, J. et al. Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. J. Genet. Genomics 44, 465–468 (2017).

Article  PubMed  CAS  Google Scholar 

Yip, M. C. J., Savickas, S., Gygi, S. P. & Shao, S. ELAC1 repairs tRNAs cleaved during ribosome-associated quality control. Cell Rep. 30, 2106–2114 (2020).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pinto, P. H. et al. ANGEL2 is a member of the CCR4 family of deadenylases with 2’,3’-cyclic phosphatase activity. Science 369, 524–530 (2020).

Article  PubMed  CAS  Google Scholar 

Yip, M. C. J. et al. Mechanism for recycling tRNAs on stalled ribosomes. Nat. Struct. Mol. Biol. 26, 343–349 (2019).

Article  PubMed  CAS  Google Scholar 

Li de la Sierra-Gallay, I., Mathy, N., Pellegrini, O. & Condon, C. Structure of the ubiquitous 3’ processing enzyme RNase Z bound to transfer RNA. Nat. Struct. Mol. Biol. 13, 376–377 (2006).

Article  PubMed  Google Scholar 

Kostelecky, B., Pohl, E., Vogel, A., Schilling, O. & Meyer-Klaucke, W. The crystal structure of the zinc phosphodiesterase from Escherichia coli provides insight into function and cooperativity of tRNase Z-family proteins. J. Bacteriol. 188, 1607–1614 (2006).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ishii, R. et al. Crystal structure of the tRNA 3’ processing endoribonuclease tRNase Z from Thermotoga maritima. J. Biol. Chem. 280, 14138–14144 (2005).

Article  PubMed  CAS  Google Scholar 

Li de la Sierra-Gallay, I., Pellegrini, O. & Condon, C. Structural basis for substrate binding, cleavage and allostery in the tRNA maturase RNase Z. Nature 433, 657–661 (2005).

Article  PubMed  Google Scholar 

Gu, H. et al. A 5’ tRNA-Ala-derived small RNA regulates anti-fungal defense in plants. Sci. China Life Sci. 65, 1–15 (2022).

Article  PubMed  CAS  Google Scholar 

Tanaka, N., Meineke, B. & Shuman, S. RtcB, a novel RNA ligase, can catalyze tRNA splicing and HAC1 mRNA splicing in vivo. J. Biol. Chem. 286, 30253–30257 (2011).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Behrens, A., Rodschinka, G. & Nedialkova, D. D. High-resolution quantitative profiling of tRNA abundance and modification status in eukaryotes by mim-tRNAseq. Mol. Cell 81, 1802–1815 (2021).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sakata, T. & Higashitani, A. Male sterility accompanied with abnormal anther development in plants – genes and environmental stresses with special reference to high temperature injury. Int. J. Plant Dev. Biol. 2, 42–51 (2008).

Google Scholar 

Dimitrova, L. N., Kuroha, K., Tatematsu, T. & Inada, T. Nascent peptide-dependent translation arrest leads to Not4p-mediated protein degradation by the proteasome. J. Biol. Chem. 284, 10343–10352 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Letzring, D. P., Wolf, A. S., Brule, C. E. & Grayhack, E. J. Translation of CGA codon repeats in yeast involves quality control components and ribosomal protein L1. RNA 19, 1208–1217 (2013).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gamble, C. E., Brule, C. E., Dean, K. M., Fields, S. & Grayhack, E. J. Adjacent codons act in concert to modulate translation efficiency in yeast. Cell 166, 679–690 (2016).

留言 (0)

沒有登入
gif