Evaluation of the cytotoxic activity of chemically characterized propolis originating from different geographic regions and vitamin D co-supplementation against human ovarian cancer cells

Takahashi H, et al. 1,2,3-Triazolyl esterization of PAK1-blocking propolis ingredients, artepillin C (ARC) and caffeic acid (CA), for boosting their anti-cancer/anti-PAK1 activities along with cell-permeability. Drug Discov Ther. 2017;11:104–9.

Article  PubMed  CAS  Google Scholar 

Abbafati C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of Disease Study 2019. Lancet. 2020;396:1204–22.

Article  Google Scholar 

Bray F, et al. Comparing cancer and cardiovascular disease trends in 20 middle- or high-income countries 2000–19: a pointer to national trajectories towards achieving Sustainable Development goal target 3.4. Cancer Treat Rev. 2021;100:102290–7.

Article  PubMed  Google Scholar 

Dumitrescu RG. Interplay between genetic and epigenetic changes in breast cancer subtypes. Cancer Epigenetics Precision Med. 2018;1856:19–34.

Article  Google Scholar 

Zhang L, Lu Q, Chang C. Epigenetics in health and disease. Adv Exp Med Biol. 2020;1253:3–55.

Article  PubMed  CAS  Google Scholar 

Lewandowska AM, Rudzki M, Rudzki S, Lewandowski T, Laskowska B. Environmental risk factors for cancer - review paper. Ann Agric Environ Med. 2019;26:1–7.

Article  PubMed  CAS  Google Scholar 

Bishop KS, Ferguson LR. The interaction between epigenetics, nutrition and the development of cancer. Nutrients. 2015;7:922–47.

Article  PubMed  PubMed Central  CAS  Google Scholar 

M S. Ovarian cancer: an overview. Radiol Technol. 2020;91:561–75.

Google Scholar 

El-Seedi HR, et al. Exploring natural products-based cancer therapeutics derived from Egyptian flora. J Ethnopharmacol. 2021;269:113626–61.

Article  PubMed  CAS  Google Scholar 

Ouyang Y, et al. Cancer-fighting potentials of algal polysaccharides as nutraceuticals. Food Res Int. 2021;110522–35. https://doi.org/10.1016/j.foodres.2021.110522

Khan AW, Farooq M, Haseeb M, Choi S. Role of plant-derived active constituents in cancer treatment and their mechanisms of action. Cells. 2022;11:1–48.

Article  Google Scholar 

Pasupuleti VR, Sammugam L, Ramesh N, Gan SH. Honey, propolis, and royal jelly: A comprehensive review of their biological actions and health benefits. Oxid. Med. Cell. Longev. 2017, (2017).

Forma E. Anticancer activity of propolis and its compounds. Nutrients. 2021;13:2594–613.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Anjum SI, et al. Composition and functional properties of propolis (bee glue): a review. Saudi J Biol Sci. 2019;26:1695–703.

Article  PubMed  CAS  Google Scholar 

Piatek K, Schepelmann M, Kallay E. The effect of vitamin d and its analogs in ovarian cancer. Nutrients. 2022;14:3867–76.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Carlberg C, Velleuer E. Vitamin D and the risk for cancer: a molecular analysis. Biochem Pharmacol. 2022;196:114735–44.

Article  PubMed  CAS  Google Scholar 

Websky K, Von, Abdallah A, Reichetzeder C, Tsuprykov O. The impact of vitamin D on pregnancy-related disorders and on o ff spring outcome. J Steroid Biochem Mol Biol. 2018;180:51–64.

Article  Google Scholar 

Darwish AMG, et al. Chemical profiling and nutritional evaluation of bee pollen, bee bread, and royal jelly and their role in functional fermented dairy products. Molecules. 2023;28:227–53.

Article  CAS  Google Scholar 

El-Din MIG, Fahmy NM, Wu F, Salem MM, Khattab OM, El-Seedi HR, Korinek M, Hwang TL, Osman AK, El-Shazly M, Fayez S. Comparative LC–LTQ–MS–MS analysis of the leaf extracts of Lantana camara and Lantana montevidensis growing in Egypt with insights into their anti-inflammatory, and cytotoxic activities. Plants. 2022;11:1699–719.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Abosedera DA, et al. Metabolomic profile and in vitro evaluation of the cytotoxic activity of Asphodelus microcarpus against human malignant melanoma cells A375. Arab J Chem. 2022;15:104174–87.

Article  CAS  Google Scholar 

Hossain R, et al. Propolis: an update on its chemistry and pharmacological applications. Chin Med (United Kingdom). 2022;17:100–59.

Google Scholar 

Su KY, et al. Taiwanese green propolis and propolin G protect the liver from the pathogenesis of fibrosis via eliminating TGF-β-induced Smad2/3 phosphorylation. J Agric Food Chem. 2014;62:3192–201.

Article  PubMed  CAS  Google Scholar 

Corrêa FRS, Schanuel FS, Moura-Nunes N, Monte-Alto-Costa A, Daleprane JB. Brazilian red propolis improves cutaneous wound healing suppressing inflammation-associated transcription factor NFκB. Biomed Pharmacother. 2017;86:162–71.

Article  PubMed  Google Scholar 

Li F, He YM, Awale S, Kadota S, Tezuka Y. Two new cytotoxic phenylallylflavanones from Mexican propolis. Chem Pharm Bull. 2011;59:1194–6.

Article  CAS  Google Scholar 

Shi H, et al. Isolation and characterization of five glycerol esters from Wuhan propolis and their potential anti-inflammatory properties. J Agric Food Chem. 2012;60:10041–7.

Article  PubMed  CAS  Google Scholar 

Agüero MB, et al. Argentinean propolis from Zuccagnia punctata cav. (Caesalpinieae) exudates: phytochemical characterization and antifungal activity. J Agric Food Chem. 2010;58:194–201.

Article  PubMed  Google Scholar 

Picolotto A, et al. Bacterial cellulose membrane associated with red propolis as phytomodulator: improved healing e ff ects in experimental models of diabetes mellitus. Biomed Pharmacother. 2019;112:108640–9.

Article  PubMed  CAS  Google Scholar 

Lotti C, et al. Constituents of hondurian propolis with inhibitory effects on saccharomyces cerevisiae multidrug resistance protein pdr5p. J Agric Food Chem. 2012;60:10540–5.

Article  PubMed  CAS  Google Scholar 

Massaro CF, Simpson JB, Powell D, Brooks P. Chemical composition and antimicrobial activity of honeybee (Apis mellifera ligustica) propolis from subtropical eastern Australia. (2015) https://doi.org/10.1007/s00114-015-1318-z

Ristivojević P, Trifković J, Gašić U, Andrić F, Nedić N, Tešić Ž, Milojković-Opsenica D. Ultrahigh-performance liquid chromatography and mass spectrometry (UHPLC–LTQ/Orbitrap/MS/MS) study of phenolic profile of Serbian poplar type propolis. Phytochem Anal. 2015;26:127–36.

Article  PubMed  Google Scholar 

Ożarowski M, Karpiński TM, Alam R, Łochyńska M. Antifungal properties of chemically defined propolis from various geographical regions. Microorganisms 10, (2022).

Lotti C, et al. Chemical constituents of red Mexican propolis. J Agric Food Chem. 2010;58:2209–13.

Article  PubMed  CAS  Google Scholar 

Athikomkulchai S, Awale S, Ruangrungsi N, Ruchirawat S, Kadota S. Chemical constituents of Thai propolis. Fitoterapia. 2013;88:96–100.

Article  PubMed  CAS  Google Scholar 

Gardana C, Simonetti P. Evaluation of allergens in propolis by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2011;25:1675–82.

Article  PubMed  CAS  Google Scholar 

Guzmán-Gutiérrez SL, et al. Mexican propolis: a source of antioxidants and anti-inflammatory compounds, and isolation of a novel chalcone and ε-caprolactone derivative. Molecules. 2018;23:334–49.

Article  PubMed  PubMed Central  Google Scholar 

Sun LP, et al. Chrysin: a histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolis. J Agric Food Chem. 2012;60:11748–58.

Article  PubMed  CAS  Google Scholar 

Moncla BJ, Guevara PW, Wallace JA, Marcucci MC. The inhibitory activity of typifi ed propolis against Enterococcus species. Z für Naturforsch C. 2012;67:249–56.

CAS 

留言 (0)

沒有登入
gif