NK/DC crosstalk-modulating antitumor activity via Sema3E/PlexinD1 axis for enhanced cancer immunotherapy

Xu M, Han X, Xiong H et al (2023) Cancer nanomedicine: emerging strategies and therapeutic potentials. Molecules 28. https://doi.org/10.3390/molecules28135145

Yao L, Wang Q, Ma W (2023) Navigating the immune maze: pioneering strategies for unshackling cancer immunotherapy resistance. Cancers (Basel) 15. https://doi.org/10.3390/cancers15245857

Mitra A, Kumar A, Amdare NP, Pathak R (2024) Current landscape of cancer immunotherapy: harnessing the immune arsenal to overcome immune evasion. Biology (Basel) 13. https://doi.org/10.3390/biology13050307

Williams JR. The immunotherapy revolution: the best new hope for saving cancer patients’ lives. Gatekeeper Press; 2019.

Google Scholar 

Gross G, Eshhar Z. Therapeutic potential of T cell chimeric antigen receptors (CARs) in cancer treatment: counteracting off-tumor toxicities for safe CAR T cell therapy. Annu Rev Pharmacol Toxicol. 2016;56:59–83.

Article  CAS  PubMed  Google Scholar 

Brudno JN, Kochenderfer JN. Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol. 2018;15:31–46.

Article  CAS  PubMed  Google Scholar 

Abbasi S, Totmaj MA, Abbasi M, et al. Chimeric antigen receptor T (CAR-T) cells: novel cell therapy for hematological malignancies. Cancer Med. 2023;12:7844–58.

Article  CAS  PubMed  Google Scholar 

Kamrani A, Hosseinzadeh R, Shomali N, et al. New immunotherapeutic approaches for cancer treatment. Pathol Pract. 2023;248:154632.

Article  CAS  Google Scholar 

Kciuk M, Yahya EB, Mohamed Ibrahim Mohamed M, et al. Recent advances in molecular mechanisms of cancer immunotherapy. Cancers (Basel). 2023;15:2721.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17:807–21. https://doi.org/10.1038/s41423-020-0488-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silva AJD, Moura IA de, Gama MATM da et al (2023) Advancing immunotherapies for HPV-related cancers: exploring novel vaccine strategies and the influence of tumor microenvironment. Vaccines 11. https://doi.org/10.3390/vaccines11081354

Adhikary S, Pathak S, Palani V et al (2024) Current technologies and future perspectives in immunotherapy towards a clinical oncology approach. Biomedicines 12. https://doi.org/10.3390/biomedicines12010217

Hu Q, Bian Q, Rong D, et al. JAK/STAT pathway: extracellular signals, diseases, immunity, and therapeutic regimens. Front Bioeng Biotechnol. 2023;11:1110765.

Article  PubMed  PubMed Central  Google Scholar 

Hargadon KM. Genetic dysregulation of immunologic and oncogenic signaling pathways associated with tumor-intrinsic immune resistance: a molecular basis for combination targeted therapy-immunotherapy for cancer. Cell Mol Life Sci. 2023;80:40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Q, Li Y, Lu T, et al. miR-373 promotes invasion and metastasis of colorectal cancer cells via activating ERK/MAPK pathway. Sci Rep. 2024;14:124.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang M, Guo M, Su C, et al. Knockdown of growth differentiation factor-15 restrains prostate cancer through regulating MAPK/ERK signaling pathway. Cell Mol Biol. 2024;70:162–7.

Article  PubMed  Google Scholar 

Campbell AM, Decker RH. Mini-review of conventional and hypofractionated radiation therapy combined with immunotherapy for non-small cell lung cancer. Transl lung cancer Res. 2017;6:220–9. https://doi.org/10.21037/tlcr.2017.03.02.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li B, Jin J, Guo D, et al. Immune checkpoint inhibitors combined with targeted therapy: the recent advances and future potentials. Cancers (Basel). 2023;15:2858.

Article  CAS  PubMed  Google Scholar 

Cazzetta V, Franzese S, Carenza C et al (2021) Natural killer-dendritic cell interactions in liver cancer: implications for immunotherapy. Cancers (Basel) 13. https://doi.org/10.3390/cancers13092184

Sharma P, Kumar P, Sharma R. Natural killer cells - their role in tumour immunosurveillance. J Clin Diagn Res. 2017;11:BE01–5. https://doi.org/10.7860/JCDR/2017/26748.10469.

Article  PubMed  PubMed Central  Google Scholar 

Liu S, Galat V, Galat4 Y et al (2021) NK cell-based cancer immunotherapy: from basic biology to clinical development. J Hematol Oncol 14. https://doi.org/10.1186/s13045-020-01014-w

Kadowaki N. Dendritic cells—a conductor of T cell differentiation—. Allergol Int. 2007;56:193–9.

Article  CAS  PubMed  Google Scholar 

Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.

Article  CAS  PubMed  Google Scholar 

Peterson EE, Barry KC. The natural killer-dendritic cell immune axis in anti-cancer immunity anD IMMUNOTHERAPY. Front Immunol. 2020;11:621254. https://doi.org/10.3389/fimmu.2020.621254.

Article  CAS  PubMed  Google Scholar 

Ghasemi M, Abbasi L, Ghanbari Naeini L, et al. Dendritic cells and natural killer cells: the road to a successful oncolytic virotherapy. Front Immunol. 2023;13:950079.

Article  PubMed  PubMed Central  Google Scholar 

Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020;30:R921–5. https://doi.org/10.1016/j.cub.2020.06.081.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahluwalia P, Ahluwalia M, Mondal AK et al (2021) Natural killer cells and dendritic cells: expanding clinical relevance in the non-small cell lung cancer (NSCLC) tumor microenvironment. Cancers (Basel) 13. https://doi.org/10.3390/cancers13164037

Movassagh H, Shan L, Koussih L, et al. Semaphorin 3E deficiency dysregulates dendritic cell functions: in vitro and in vivo evidence. PLoS ONE. 2021;16:1–12. https://doi.org/10.1371/journal.pone.0252868.

Article  CAS  Google Scholar 

Yu R, Kim N-S, Li Y, et al. Vascular Sema3E-Plexin-D1 signaling reactivation promotes post-stroke recovery through VEGF downregulation in mice. Transl Stroke Res. 2022;13:142–59. https://doi.org/10.1007/s12975-021-00914-4.

Article  CAS  PubMed  Google Scholar 

Mastrantonio R, You H, Tamagnone L. Semaphorins as emerging clinical biomarkers and therapeutic targets in cancer. Theranostics. 2021;11:3262–77. https://doi.org/10.7150/thno.54023.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vivekanandhan S, Madamsetty VS, Angom RS, et al. Role of PLEXIND1/TGFβ signaling axis in pancreatic ductal adenocarcinoma progression correlates with the mutational status of KRAS. Cancers (Basel). 2021;13:4048.

Article  CAS  PubMed  Google Scholar 

Vitale M, Della CM, Carlomagno S, et al. NK-dependent DC maturation is mediated by TNFα and IFNγ released upon engagement of the NKp30 triggering receptor. Blood. 2005;106:566–71.

Article  CAS  PubMed  Google Scholar 

Alamri A, Soussi Gounni A, Kung SKP. View point: semaphorin-3E: an emerging modulator of natural killer cell functions? Int J Mol Sci. 2017;18:2337.

Article  PubMed  PubMed Central  Google Scholar 

Buzas EI. The roles of extracellular vesicles in the immune system. Nat Rev Immunol. 2023;23:236–50. https://doi.org/10.1038/s41577-022-00763-8.

Article  CAS  PubMed  Google Scholar 

Iragavarapu-Charyulu V, Wojcikiewicz E, Urdaneta A. Semaphorins in angiogenesis and autoimmune diseases: therapeutic targets? Front Immunol. 2020;11:346. https://doi.org/10.3389/fimmu.2020.00346.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franzolin G, Tamagnone L (2019) Semaphorin signaling in cancer-associated inflammation. Int J Mol Sci 20. https://doi.org/10.3390/ijms20020377

Li K, Shi H, Zhang B, et al. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct Target Ther. 2021;6:362. https://doi.org/10.1038/s41392-021-00670-9.

留言 (0)

沒有登入
gif