Phillyrin inhibits oxidative stress and neutrophil extracellular trap formation through the KEAP1/NRF2 pathway in gouty arthritis

Baird L, & Yamamoto M (2020) The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol Cell Biol, 40(13). https://doi.org/10.1128/mcb.00099-20

Boeltz S, Amini P, Anders H J, Andrade F, Bilyy R, Chatfield S, ... Herrmann M (2019) To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death Differ, 26(3), 395–408. https://doi.org/10.1038/s41418-018-0261-x

Buosi P, Borghi F A, Lopes AM, Facincani IDS, Fernandes-Ferreira R, Oliveira-Brancati CIF, ... de Araújo Filho GM (2021) Oxidative stress biomarkers in treatment-responsive and treatment-resistant schizophrenia patients. Trends Psychiatry Psychother, 43(4), 278–285. https://doi.org/10.47626/2237-6089-2020-0078

Cantin AM, Ouellet C, Cloutier A, McDonald PP. Airway mucins inhibit oxidative and non-oxidative bacterial killing by human neutrophils. Front Pharmacol. 2020;11:554353. https://doi.org/10.3389/fphar.2020.554353.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Castanheira FVS, Kubes P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood. 2019;133(20):2178–85. https://doi.org/10.1182/blood-2018-11-844530.

Article  CAS  PubMed  Google Scholar 

Chen F, Xiao M, Hu S, Wang M. Keap1-Nrf2 pathway: a key mechanism in the occurrence and development of cancer. Front Oncol. 2024;14:1381467. https://doi.org/10.3389/fonc.2024.1381467.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen G, Mao Y, Wang J, Zhou J, Diao L, Wang S, ... Liu M (2023) Phillyrin ameliorated collagen-induced arthritis through inhibition of NF-κB and MAPKs pathways in fibroblast-like synoviocytes. Arabian J Chem, 16(8), 104844. https://doi.org/10.1016/j.arabjc.2023.104844

Chirivi RGS, van Rosmalen JWG, van der Linden M, Euler M, Schmets G, Bogatkevich G, ... Raats JMH (2021) Therapeutic ACPA inhibits NET formation: a potential therapy for neutrophil-mediated inflammatory diseases. Cell Mol Immunol, 18(6), 1528–1544. https://doi.org/10.1038/s41423-020-0381-3

Cristinziano L, Modestino L, Antonelli A, Marone G, Simon HU, Varricchi G, Galdiero MR. Neutrophil extracellular traps in cancer. Semin Cancer Biol. 2022;79:91–104. https://doi.org/10.1016/j.semcancer.2021.07.011.

Article  CAS  PubMed  Google Scholar 

Du Y, You L, Ni B, Sai N, Wang W, Sun M, ... Ni J (2020) Phillyrin mitigates apoptosis and oxidative stress in hydrogen peroxide-treated RPE cells through activation of the Nrf2 signaling pathway. Oxid Med Cell Longev, 2020, 2684672. https://doi.org/10.1155/2020/2684672

Ear T, Tatsiy O, Allard FL, McDonald PP. Regulation of discrete functional responses by Syk and Src family tyrosine kinases in human neutrophils. J Immunol Res. 2017;2017:4347121. https://doi.org/10.1155/2017/4347121.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Euler M, Hoffmann MH. The double-edged role of neutrophil extracellular traps in inflammation. Biochem Soc Trans. 2019;47(6):1921–30. https://doi.org/10.1042/bst20190629.

Article  CAS  PubMed  Google Scholar 

Filep JG. Targeting neutrophils for promoting the resolution of inflammation. Front Immunol. 2022;13:866747. https://doi.org/10.3389/fimmu.2022.866747.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu H, Yu H, Qin L, Yu H, Song Y, Chen G, ... Peng A (2023) MSU crystal deposition contributes to inflammation and immune responses in gout remission. Cell Rep, 42(10), 113139. https://doi.org/10.1016/j.celrep.2023.113139

Guo Y, Gao F, Wang X, Pan Z, Wang Q, Xu S, ... Qian J (2021) Spontaneous formation of neutrophil extracellular traps is associated with autophagy. Sci Rep, 11(1), 24005. https://doi.org/10.1038/s41598-021-03520-4

He X, Zhang L, Xiong A, Ran Q, Wang J, Wu D, ... Li G (2021) PM2.5 aggravates NQO1-induced mucus hyper-secretion through release of neutrophil extracellular traps in an asthma model. Ecotoxicol Environ Saf, 218, 112272. https://doi.org/10.1016/j.ecoenv.2021.112272

Huang S, Wang Y, Lin S, Guan W, Liang H, Shen J. Neutrophil autophagy induced by monosodium urate crystals facilitates neutrophil extracellular traps formation and inflammation remission in gouty arthritis. Front Endocrinol (Lausanne). 2023;14:1071630. https://doi.org/10.3389/fendo.2023.1071630.

Article  PubMed  Google Scholar 

Islam MM, & Takeyama N (2023) Role of neutrophil extracellular traps in health and disease pathophysiology: recent insights and advances. Int J Mol Sci, 24(21). https://doi.org/10.3390/ijms242115805

Jia E, Li Z, Geng H, Zhu H, Wang Y, Lin F, ... Zhang J (2022) Neutrophil extracellular traps induce the bone erosion of gout. BMC Musculoskelet Disord, 23(1), 1128. https://doi.org/10.1186/s12891-022-06115-w

Jiang Q, Chen J, Long X, Yao X, Zou X, Yang Y, ... Zhang H (2020) Phillyrin protects mice from traumatic brain injury by inhibiting the inflammation of microglia via PPARγ signaling pathway. Int Immunopharmacol, 79, 106083. https://doi.org/10.1016/j.intimp.2019.106083

Jiang Y, Tu X, Liao X, He Y, Wang S, Zhang Q, Qing Y. New inflammatory marker associated with disease activity in gouty arthritis: the systemic inflammatory response index. J Inflamm Res. 2023;16:5565–73. https://doi.org/10.2147/jir.S432898.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol. 2023;97(10):2499–574. https://doi.org/10.1007/s00204-023-03562-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones DP. Radical-free biology of oxidative stress. Am J Physiol Cell Physiol. 2008;295(4):C849-868. https://doi.org/10.1152/ajpcell.00283.2008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keller SF, Mandell BF. Management and cure of gouty arthritis. Med Clin North Am. 2021;105(2):297–310. https://doi.org/10.1016/j.mcna.2020.09.013.

Article  PubMed  Google Scholar 

Keyßer G. Gout arthritis: pathogenesis, diagnostics and treatment. Dtsch Med Wochenschr. 2020;145(14):991–1005. https://doi.org/10.1055/a-1036-8348.

Article  PubMed  Google Scholar 

Li C, Wu C, Li F, Xu W, Zhang X, Huang Y, Xia D. Targeting neutrophil extracellular traps in gouty arthritis: insights into pathogenesis and therapeutic potential. J Inflamm Res. 2024;17:1735–63. https://doi.org/10.2147/jir.S460333.

Article  PubMed  PubMed Central  Google Scholar 

Li X, Wang L, Li C, Tian R, Bai Y, Zhang X, Li SJNPC (2023) Phillyrin ameliorates oxidative stress in D-galactose-induced senescence in the brain of mice by regulating the Nrf2/HO-1 signaling pathway. 18(5), 1934578X231173237.

Liew PX, Kubes P. The neutrophil’s role during health and disease. Physiol Rev. 2019;99(2):1223–48. https://doi.org/10.1152/physrev.00012.2018.

Article  CAS  PubMed  Google Scholar 

Lin Y, Luo T, Weng A, Huang X, Yao Y, Fu Z, ... Pan H (2020) Gallic acid alleviates gouty arthritis by inhibiting NLRP3 inflammasome activation and pyroptosis through enhancing Nrf2 signaling. Front Immunol, 11, 580593. https://doi.org/10.3389/fimmu.2020.580593

Luo Q, Liu Q, Tang K, Zhong B, Yang S, Li X (2024) Phillyrin improves myocardial remodeling in salt-sensitive hypertensive mice by reducing endothelin1 signaling. Journal of Pharmacy and Pharmacology, rgae018. https://doi.org/10.1093/jpp/rgae018

Ma J, Wang Z, Sun Y, Zheng R, Tan H, Zhang H., ... Sun Z (2024) Phillyrin: a potential therapeutic agent for osteoarthritis via modulation of NF-κB and Nrf2 signaling pathways. Int Immunopharmacol, 141, 112960. https://doi.org/10.1016/j.intimp.2024.112960

Manda-Handzlik A, Demkow U. Neutrophils: the role of oxidative and nitrosative stress in health and disease. Adv Exp Med Biol. 2015;857:51–60. https://doi.org/10.1007/5584_2015_117.

Article  PubMed  Google Scholar 

McMahon M, Itoh K, Yamamoto M, Hayes JDJJOBC (2003) Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. 278(24), 21592–21600.

Mitroulis I, Kambas K, Chrysanthopoulou A, Skendros P, Apostolidou E, Kourtzelis I, ... Ritis K (2011). Neutrophil extracellular trap formation is associated with IL-1β and autophagy-related signaling in gout. PLoS One, 6(12), e29318. https://doi.org/10.1371/journal.pone.0029318

Parisa N, Kamaluddin MT, Saleh MI, Sinaga E. The inflammation process of gout arthritis and its treatment. J Adv Pharm Technol Res. 2023;14(3):166–70. https://doi.org/10.4103/japtr.japtr_144_23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ravindran M, Khan MA, Palaniyar N (2019) Neutrophil extracellular trap formation: physiology, pathology, and pharmacology. Biomolecules, 9(8). https://doi.org/10.3390/biom9080365

Reber LL, Marichal T, Sokolove J, Starkl P, Gaudenzio N, Iwakura Y, ... Galli SJ (2014) Contribution of mast cell-derived interleukin-1β to uric acid crystal-induced acute arthritis in mice. Arthritis Rheumatol, 66(10), 2881–2891. https://doi.org/10.1002/art.38747

Saha S, Buttari B, Panieri E, Profumo E, Saso L (2020) An overview of Nrf2 signaling pathway and its role in inflammation. Molecules, 25(22). https://doi.org/10.3390/molecules25225474

Saha S, & Rebouh NY (2023) Anti-osteoarthritis mechanism of the Nrf2 signaling pathway. Biomedicines, 11(12). https://doi.org/10.3390/biomedicines11123176

Sil P, Hayes CP, Reaves BJ, Breen P, Quinn S, Sokolove J, Rada B. P2Y6 receptor antagonist MRS2578 inhibits neutrophil activation and aggregated neutrophil extracellular trap formation induced by gout-associated monosodium urate crystals. J Immunol. 2017;198(1):428–42. https://doi.org/10.4049/jimmunol.1600766.

Article  CAS  PubMed  Google Scholar 

Singhal A, Kumar S. Neutrophil and remnant clearance in immunity and inflammation. Immunology. 2022;165(1):22–43. https://doi.org/10.1111/imm.13423.

Article  CAS  PubMed  Google Scholar 

Sprenkeler EGG, Zandstra J, van Kleef ND, Goetschalckx I, Verstegen B, Aarts CEM, ... Kuijpers TW (2022) S100A8/A9 is a marker for the release of neutrophil extracellular traps and induces neutrophil activation. Cells, 11(2). https://doi.org/10.3390/cells11020236

Tang K, Zhong B, Luo Q, Liu Q, Chen X, Cao D, ... Yang S (2022) Phillyrin attenuates norepinephrine-induced cardiac hypertrophy and inflammatory response by suppressing p38/ERK1/2 MAPK and AKT/NF-kappaB pathways. Eur J Pharmacol, 927, 175022. https://doi.org/10.1016/j.ejphar.2022.175022

Tausche AK, Aringer M. Gouty arthritis. Z Rheumatol. 2016;75(9):885–98. https://doi.org/10.1007/s00393-016-0206-z.

Article  CAS  PubMed  Google Scholar 

Tonelli C, Chio IIC, Tuveson DA. Transcriptional regulation by Nrf2. Antioxid Redox Signal. 2018;29(17):1727–45. https://doi.org/10.1089/ars.2017.7342.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vedder D, Gerritsen M, Nurmohamed MT, van Vollenhoven RF, Lood C. A neutrophil signature is strongly associated with increased cardiovascular risk in gout. Rheumatology. 2020;60(6):2783–90.

留言 (0)

沒有登入
gif