Integrating machine learning and multi-omics analysis to develop an asparagine metabolism immunity index for improving clinical outcome and drug sensitivity in lung adenocarcinoma

Siegel RL, Miller KD, Wagle NS, et al. The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol. 2023;73(1):17–48. https://doi.org/10.3322/caac.21763.

Article  Google Scholar 

Leiter A, Veluswamy RR, Wisnivesky JP. The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol. 2023;20(9):624–39. https://doi.org/10.1038/s41571-023-00798-3.

Article  PubMed  Google Scholar 

Hill W, Lim EL, Weeden CE, et al. Lung adenocarcinoma promotion by air pollutants. Nature. 2023;616(7955):159–67. https://doi.org/10.1038/s41586-023-05874-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31–46. https://doi.org/10.1158/2159-8290.Cd-21-1059.

Article  CAS  PubMed  Google Scholar 

Wang Y, Qian F, Hu M, et al. Clinical significance of visceral pleural and lymphovascular invasion in surgically resected adenosquamous lung cancer. Eur J Cardio-Thorac Surg: Off J Eur Assoc Cardio-Thoracic Surg. 2021;59(3):617–23. https://doi.org/10.1093/ejcts/ezaa353.

Article  Google Scholar 

Travis WD, Brambilla E, Noguchi M, et al. International association for the study of lung cancer/American thoracic society/European respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol: Off Publ Int Assoc Study Lung Cancer. 2011;6(2):244–85. https://doi.org/10.1097/JTO.0b013e318206a221.

Article  Google Scholar 

Zheng X, Wu Y, Zuo H, et al. Metal nanoparticles as novel agents for lung cancer diagnosis and therapy. Small. 2023;19(18):e2206624. https://doi.org/10.1002/smll.202206624.

Article  CAS  PubMed  Google Scholar 

Hao D, Han G, Sinjab A, et al. The single-cell immunogenomic landscape of B and plasma cells in early-stage lung adenocarcinoma. Cancer Discov. 2022;12(11):2626–45. https://doi.org/10.1158/2159-8290.Cd-21-1658.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang F, Guo W, Zhou B, et al. Three-year follow-up of neoadjuvant programmed cell death protein-1 inhibitor (Sintilimab) in NSCLC. J Thorac Oncol: Off Publ Int Assoc Study Lung Cancer. 2022;17(7):909–20. https://doi.org/10.1016/j.jtho.2022.04.012.

Article  CAS  Google Scholar 

Alexander M, Kim SY, Cheng H. Update 2020: management of non-small cell lung cancer. Lung. 2020;198(6):897–907. https://doi.org/10.1007/s00408-020-00407-5.

Article  PubMed  PubMed Central  Google Scholar 

Wu J, Lin Z. Non-small cell lung cancer targeted therapy: drugs and mechanisms of drug resistance. Int J Mol Sci. 2022;23(23):15056. https://doi.org/10.3390/ijms232315056.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krall AS, Xu S, Graeber TG, et al. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat Commun. 2016;7:11457. https://doi.org/10.1038/ncomms11457.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen X, Jain A, Aladelokun O, et al. Asparagine, colorectal cancer, and the role of sex, genes, microbes, and diet: a narrative review. Front Mol Biosci. 2022;9:958666. https://doi.org/10.3389/fmolb.2022.958666.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu Y, Shi T, Cui X, et al. Asparagine reinforces mTORC1 signaling to boost thermogenesis and glycolysis in adipose tissues. The EMBO J. 2021;40(24):e108069. https://doi.org/10.15252/embj.2021108069.

Article  CAS  PubMed  Google Scholar 

Chiu M, Taurino G, Bianchi MG, et al. Asparagine synthetase in cancer: beyond acute lymphoblastic leukemia. Front Oncol. 2019;9:1480. https://doi.org/10.3389/fonc.2019.01480.

Article  PubMed  Google Scholar 

Knott SRV, Wagenblast E, Khan S, et al. Asparagine bioavailability governs metastasis in a model of breast cancer. Nat. 2018;554(7692):378–81. https://doi.org/10.1038/nature25465.

Article  CAS  Google Scholar 

Lorenzi PL, Reinhold WC, Rudelius M, et al. Asparagine synthetase as a causal, predictive biomarker for L-asparaginase activity in ovarian cancer cells. Mol Cancer Ther. 2006;5(11):2613–23. https://doi.org/10.1158/1535-7163.Mct-06-0447.

Article  CAS  PubMed  Google Scholar 

Jiang J, Batra S, Zhang J. Asparagine: a metabolite to be targeted in cancers. Metabolites. 2021;11(6):402. https://doi.org/10.3390/metabo11060402.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pavlova NN, Hui S, Ghergurovich JM, et al. As extracellular glutamine levels decline, asparagine becomes an essential amino acid. Cell Metab. 2018;27(2):428-438.e425. https://doi.org/10.1016/j.cmet.2017.12.006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Du F, Chen J, Liu H, et al. SOX12 promotes colorectal cancer cell proliferation and metastasis by regulating asparagine synthesis. Cell Death Dis. 2019;10(3):239. https://doi.org/10.1038/s41419-019-1481-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen X, Cai Y, Lu L, et al. Asparagine metabolism in tumors is linked to poor survival in females with colorectal cancer: a cohort study. Metabolites. 2022;12(2):164. https://doi.org/10.3390/metabo12020164.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu Y, Xia Z, Sun X, et al. Identification of a glutamine metabolism reprogramming signature for predicting prognosis, immunotherapy efficacy, and drug candidates in bladder cancer. Front Immunol. 2023;14:1111319. https://doi.org/10.3389/fimmu.2023.1111319.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47–e47. https://doi.org/10.1093/nar/gkv007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13. https://doi.org/10.1093/nar/gky1131.

Article  CAS  PubMed  Google Scholar 

Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou G, Soufan O, Ewald J, et al. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019;47(W1):W234–41. https://doi.org/10.1093/nar/gkz240.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng D, Ye Z, Shen R, et al. IOBR: multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front Immunol. 2021;12:687975. https://doi.org/10.3389/fimmu.2021.687975.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Becht E, Giraldo NA, Lacroix L, et al. Erratum to: Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016;17(1):249.

留言 (0)

沒有登入
gif