Single-cell detection of copy number changes reveals dynamic mechanisms of adaptation to antifungals in Candida albicans

Pfaller, M. A., Diekema, D. J., Turnidge, J. D., Castanheira, M. & Jones, R. N. Twenty years of the SENTRY antifungal surveillance program: results for Candida species from 1997–2016. Open Forum Infect. Dis. 6, S79–S94 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Pfaller, M. A. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am. J. Med. 125, S3–S13 (2012).

Article  CAS  PubMed  Google Scholar 

Andes, D. R. et al. Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin. Infect. Dis. 54, 1110–1122 (2012).

Article  CAS  PubMed  Google Scholar 

Cowen, L. E. The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat. Rev. Microbiol. 6, 187–198 (2008).

Article  CAS  PubMed  Google Scholar 

Perea, S. et al. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob. Agents Chemother. 45, 2676–2684 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schiave, L. A. et al. Fluconazole levels in serum and cerebrospinal fluid according to daily dosage in patients with cryptococcosis and other fungal infections. Braz. J. Infect. Dis. 22, 11–15 (2018).

Article  PubMed  Google Scholar 

Sionov, E., Chang, Y. C., Garraffo, H. M. & Kwon-Chung, K. J. Heteroresistance to fluconazole in Cryptococcus neoformans is intrinsic and associated with virulence. Antimicrob. Agents Chemother. 53, 2804–2815 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Selmecki, A., Forche, A. & Berman, J. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313, 367–370 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Selmecki, A., Gerami-Nejad, M., Paulson, C., Forche, A. & Berman, J. An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1. Mol. Microbiol. 68, 624–641 (2008).

Article  CAS  PubMed  Google Scholar 

Todd, R. T. & Selmecki, A. Expandable and reversible copy number amplification drives rapid adaptation to antifungal drugs. Elife 9, e58349 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Todd, R. T., Wikoff, T. D., Forche, A. & Selmecki, A. Genome plasticity in Candida albicans is driven by long repeat sequences. Elife 8, e45954 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Burrack, L. S., Todd, R. T., Soisangwan, N., Wiederhold, N. P. & Selmecki, A. Genomic diversity across Candida auris clinical isolates shapes rapid development of antifungal resistance in vitro and in vivo. mBio 13, e0084222 (2022).

Article  PubMed  Google Scholar 

Poláková, S. et al. Formation of new chromosomes as a virulence mechanism in yeast Candida glabrata. Proc. Natl Acad. Sci. USA 106, 2688–2693 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Forche A. et al. Stress alters rates and types of loss of heterozygosity in Candida albicans. mBio https://doi.org/10.1128/mbio.00129-11 (2011).

Harrison, B. D. et al. A tetraploid intermediate precedes aneuploid formation in yeasts exposed to fluconazole. PLoS Biol. 12, e1001815 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Cowen, L. E. et al. Evolution of drug resistance in experimental populations of Candida albicans. J. Bacteriol. 182, 1515–1522 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirakawa, M. P. et al. Genetic and phenotypic intra-species variation in Candida albicans. Genome Res. 25, 413–425 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chibana, H., Beckerman, J. L. & Magee, P. T. Fine-resolution physical mapping of genomic diversity in Candida albicans. Genome Res. 10, 1865–1877 (2000).

Article  CAS  PubMed  Google Scholar 

Tso, G. H. W. et al. Experimental evolution of a fungal pathogen into a gut symbiont. Science 362, 589–595 (2018).

Article  CAS  PubMed  Google Scholar 

Forche, A., Magee, P. T., Selmecki, A., Berman, J. & May, G. Evolution in Candida albicans populations during a single passage through a mouse host. Genetics 182, 799–811 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pfaller, M. A. et al. Variations in fluconazole susceptibility and electrophoretic karyotype among oral isolates of Candida albicans from patients with AIDS and oral candidiasis. J. Clin. Microbiol. 32, 59–64 (1994).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosenberg, A. et al. Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent candidemia. Nat. Commun. 9, 2470 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Todd, R. T. et al. Antifungal drug concentration impacts the spectrum of adaptive mutations in Candida albicans. Mol. Biol. Evol. 40, msad009 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berman, J. & Krysan, D. J. Drug resistance and tolerance in fungi. Nat. Rev. Microbiol. 18, 319–331 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, F. et al. Antifungal tolerance and resistance emerge at distinct drug concentrations and rely upon different aneuploid chromosomes. mBio 14, e00227-23 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Sionov, E., Chang, Y. C. & Kwon-Chung, K. J. Azole heteroresistance in Cryptococcus neoformans: emergence of resistant clones with chromosomal disomy in the mouse brain during fluconazole treatment. Antimicrob. Agents Chemother. 57, 5127–5130 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ford, C. B. et al. The evolution of drug resistance in clinical isolates of Candida albicans. Elife 4, e00662 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Mount, H. O. et al. Global analysis of genetic circuitry and adaptive mechanisms enabling resistance to the azole antifungal drugs. PLoS Genet. 14, e1007319 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Bergin Sean, A. et al. Systematic analysis of copy number variations in the pathogenic yeast Candida parapsilosis identifies a gene amplification in RTA3 that is associated with drug resistance. mBio 13, e01777-22 (2022).

PubMed  PubMed Central  Google Scholar 

Selmecki, A. M., Dulmage, K., Cowen, L. E., Anderson, J. B. & Berman, J. Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet. 5, e1000705 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Kukurudz, R. J. et al. Acquisition of cross-azole tolerance and aneuploidy in Candida albicans strains evolved to posaconazole. G3 12, jkac156 (2022).

留言 (0)

沒有登入
gif