Discovery of CO2 tolerance genes associated with virulence in the fungal pathogen Cryptococcus neoformans

Rajasingham, R. et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect. Dis. 17, 873–881 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Casadevall, A. & Perfect, J. R. Cryptococcus Neoformans (ASM Press, 1998).

Zhao, Y., Lin, J., Fan, Y. & Lin, X. Life cycle of Cryptococcus neoformans. Ann. Rev. Microbiol. 73, 17–42 (2019).

Article  CAS  Google Scholar 

Cogliati, M. Global molecular epidemiology of Cryptococcus neoformans and Cryptococcus gattii: an atlas of the molecular types. Scientifica 2013, 675213–675213 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Litvintseva, A. P., Thakur, R., Vilgalys, R. & Mitchell, T. G. Multilocus sequence typing reveals three genetic subpopulations of Cryptococcus neoformans var. grubii (serotype A), including a unique population in Botswana. Genetics 172, 2223–2238 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Desjardins, C. A. et al. Population genomics and the evolution of virulence in the fungal pathogen Cryptococcus neoformans. Genome Res. 27, 1207–1219 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Litvintseva, A. P. & Mitchell, T. G. Most environmental isolates of Cryptococcus neoformans var. grubii (serotype A) are not lethal for mice. Infect. Immun. 77, 3188–3195 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mukaremera, L. et al. The mouse inhalation model of Cryptococcus neoformans infection recapitulates strain virulence in humans and shows that closely related strains can possess differential virulence. Infect. Immun. 87, e00046–19 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Krysan, D. J. et al. Host carbon dioxide concentration is an independent stress for Cryptococcus neoformans that affects virulence and antifungal susceptibility. mBio 10, e01410–e01419 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chadwick, B. J. et al. The RAM signaling pathway links morphology, thermotolerance, and CO2 tolerance in the global fungal pathogen Cryptococcus neoformans. eLife 11, e82563 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ristow, L. C. et al. Cryptococcus neoformans adapts to the host environment through TOR-mediated remodeling of phospholipid asymmetry. Nat. Commun. 14, 6587 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, e19379 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yadav, V., Sun, S., Coelho, M. A. & Heitman, J. Centromere scission drives chromosome shuffling and reproductive isolation. Proc. Natl Acad. Sci. USA 117, 7917–7928 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fries, B. C., Chen, F., Currie, B. P. & Casadevall, A. Karyotype instability in Cryptococcus neoformans infection. J. Clin. Microbiol. 34, 1531–1534 (1996).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perfect, J. R., Ketabchi, N., Cox, G. M., Ingram, C. W. & Beiser, C. L. Karyotyping of Cryptococcus neoformans as an epidemiological tool. J. Clin. Microbiol. 31, 3305–3309 (1993).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qi, P. et al. UGbS-Flex, a novel bioinformatics pipeline for imputation-free SNP discovery in polyploids without a reference genome: finger millet as a case study. BMC Plant Biol. 18, 117 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Broman, K. W., Wu, H., Sen, S. & Churchill, G. A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889–890 (2003).

Article  CAS  PubMed  Google Scholar 

Roth, C., Sun, S., Billmyre, R. B., Heitman, J. & Magwene, P. M. A high-resolution map of meiotic recombination in Cryptococcus deneoformans demonstrates decreased recombination in unisexual reproduction. Genetics 209, 567–578 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Sun, S., Billmyre, R. B., Mieczkowski, P. A. & Heitman, J. Unisexual reproduction drives meiotic recombination and phenotypic and karyotypic plasticity in Cryptococcus neoformans. PLoS Genet. 10, e1004849 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Marra, R. E. et al. A genetic linkage map of Cryptococcus neoformans variety neoformans serotype D (Filobasidiella neoformans). Genetics 167, 619–631 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vogan, A. A., Khankhet, J., Samarasinghe, H. & Xu, J. Identification of QTLs associated with virulence related traits and drug resistance in Cryptococcus neoformans. G3 6, 2745–2759 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chun, C. D. & Madhani, H. D. Applying genetics and molecular biology to the study of the human pathogen Cryptococcus neoformans. Methods Enzymol. 470, 797–831 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Gontijo, F. A. et al. The role of the de novo pyrimidine biosynthetic pathway in Cryptococcus neoformans high temperature growth and virulence. Fungal Genet. Biol. 70, 12–23 (2014).

Article  PubMed  PubMed Central  Google Scholar 

de Montigny, J., Kern, L., Hubert, J. C. & Lacroute, F. Cloning and sequencing of URA10, a second gene encoding orotate phosphoribosyl transferase in Saccharomyces cerevisiae. Curr. Genet. 17, 105–111 (1990).

Article  PubMed  Google Scholar 

Nakamura, T., Ando, A., Takagi, H. & Shima, J. EOS1, whose deletion confers sensitivity to oxidative stress, is involved in N-glycosylation in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 353, 293–298 (2007).

Article  CAS  PubMed  Google Scholar 

Gundersen, K. Growth of Fomes annosus under reduced oxygen pressure and the effect of carbon dioxide. Nature 190, 649–649 (1961).

Article  CAS  PubMed  Google Scholar 

Römer, D., Bollazzi, M. & Roces, F. Carbon dioxide sensing in an obligate insect-fungus symbiosis: CO2 preferences of leaf-cutting ants to rear their mutualistic fungus. PLoS ONE 12, e0174597 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Teskey, R. O., Saveyn, A., Steppe, K. & McGuire, M. A. Origin, fate and significance of CO2 in tree stems. New Phytol. 177, 17–32 (2008).

Article  CAS  PubMed  Google Scholar 

Burges, A. & Fenton, E. The effect of carbon dioxide on the growth of certain soil fungi. Trans. Br. Mycol. Soc. 36, 104–108 (1953).

Article  CAS  Google Scholar 

Buyanovsky, G. A. & Wagner, G. H. Annual cycles of carbon dioxide level in soil air. Soil Sci. Soc. Am. J. 47, 1139–1145 (1983).

Article  CAS 

留言 (0)

沒有登入
gif