Rajasingham, R. et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect. Dis. 17, 873–881 (2017).
Article PubMed PubMed Central Google Scholar
Casadevall, A. & Perfect, J. R. Cryptococcus Neoformans (ASM Press, 1998).
Zhao, Y., Lin, J., Fan, Y. & Lin, X. Life cycle of Cryptococcus neoformans. Ann. Rev. Microbiol. 73, 17–42 (2019).
Cogliati, M. Global molecular epidemiology of Cryptococcus neoformans and Cryptococcus gattii: an atlas of the molecular types. Scientifica 2013, 675213–675213 (2013).
Article PubMed PubMed Central Google Scholar
Litvintseva, A. P., Thakur, R., Vilgalys, R. & Mitchell, T. G. Multilocus sequence typing reveals three genetic subpopulations of Cryptococcus neoformans var. grubii (serotype A), including a unique population in Botswana. Genetics 172, 2223–2238 (2006).
Article CAS PubMed PubMed Central Google Scholar
Desjardins, C. A. et al. Population genomics and the evolution of virulence in the fungal pathogen Cryptococcus neoformans. Genome Res. 27, 1207–1219 (2017).
Article CAS PubMed PubMed Central Google Scholar
Litvintseva, A. P. & Mitchell, T. G. Most environmental isolates of Cryptococcus neoformans var. grubii (serotype A) are not lethal for mice. Infect. Immun. 77, 3188–3195 (2009).
Article CAS PubMed PubMed Central Google Scholar
Mukaremera, L. et al. The mouse inhalation model of Cryptococcus neoformans infection recapitulates strain virulence in humans and shows that closely related strains can possess differential virulence. Infect. Immun. 87, e00046–19 (2019).
Article PubMed PubMed Central Google Scholar
Krysan, D. J. et al. Host carbon dioxide concentration is an independent stress for Cryptococcus neoformans that affects virulence and antifungal susceptibility. mBio 10, e01410–e01419 (2019).
Article CAS PubMed PubMed Central Google Scholar
Chadwick, B. J. et al. The RAM signaling pathway links morphology, thermotolerance, and CO2 tolerance in the global fungal pathogen Cryptococcus neoformans. eLife 11, e82563 (2022).
Article CAS PubMed PubMed Central Google Scholar
Ristow, L. C. et al. Cryptococcus neoformans adapts to the host environment through TOR-mediated remodeling of phospholipid asymmetry. Nat. Commun. 14, 6587 (2023).
Article CAS PubMed PubMed Central Google Scholar
Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, e19379 (2011).
Article CAS PubMed PubMed Central Google Scholar
Yadav, V., Sun, S., Coelho, M. A. & Heitman, J. Centromere scission drives chromosome shuffling and reproductive isolation. Proc. Natl Acad. Sci. USA 117, 7917–7928 (2020).
Article CAS PubMed PubMed Central Google Scholar
Fries, B. C., Chen, F., Currie, B. P. & Casadevall, A. Karyotype instability in Cryptococcus neoformans infection. J. Clin. Microbiol. 34, 1531–1534 (1996).
Article CAS PubMed PubMed Central Google Scholar
Perfect, J. R., Ketabchi, N., Cox, G. M., Ingram, C. W. & Beiser, C. L. Karyotyping of Cryptococcus neoformans as an epidemiological tool. J. Clin. Microbiol. 31, 3305–3309 (1993).
Article CAS PubMed PubMed Central Google Scholar
Qi, P. et al. UGbS-Flex, a novel bioinformatics pipeline for imputation-free SNP discovery in polyploids without a reference genome: finger millet as a case study. BMC Plant Biol. 18, 117 (2018).
Article PubMed PubMed Central Google Scholar
Broman, K. W., Wu, H., Sen, S. & Churchill, G. A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889–890 (2003).
Article CAS PubMed Google Scholar
Roth, C., Sun, S., Billmyre, R. B., Heitman, J. & Magwene, P. M. A high-resolution map of meiotic recombination in Cryptococcus deneoformans demonstrates decreased recombination in unisexual reproduction. Genetics 209, 567–578 (2018).
Article PubMed PubMed Central Google Scholar
Sun, S., Billmyre, R. B., Mieczkowski, P. A. & Heitman, J. Unisexual reproduction drives meiotic recombination and phenotypic and karyotypic plasticity in Cryptococcus neoformans. PLoS Genet. 10, e1004849 (2014).
Article PubMed PubMed Central Google Scholar
Marra, R. E. et al. A genetic linkage map of Cryptococcus neoformans variety neoformans serotype D (Filobasidiella neoformans). Genetics 167, 619–631 (2004).
Article CAS PubMed PubMed Central Google Scholar
Vogan, A. A., Khankhet, J., Samarasinghe, H. & Xu, J. Identification of QTLs associated with virulence related traits and drug resistance in Cryptococcus neoformans. G3 6, 2745–2759 (2016).
Article CAS PubMed PubMed Central Google Scholar
Chun, C. D. & Madhani, H. D. Applying genetics and molecular biology to the study of the human pathogen Cryptococcus neoformans. Methods Enzymol. 470, 797–831 (2010).
Article CAS PubMed PubMed Central Google Scholar
de Gontijo, F. A. et al. The role of the de novo pyrimidine biosynthetic pathway in Cryptococcus neoformans high temperature growth and virulence. Fungal Genet. Biol. 70, 12–23 (2014).
Article PubMed PubMed Central Google Scholar
de Montigny, J., Kern, L., Hubert, J. C. & Lacroute, F. Cloning and sequencing of URA10, a second gene encoding orotate phosphoribosyl transferase in Saccharomyces cerevisiae. Curr. Genet. 17, 105–111 (1990).
Nakamura, T., Ando, A., Takagi, H. & Shima, J. EOS1, whose deletion confers sensitivity to oxidative stress, is involved in N-glycosylation in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 353, 293–298 (2007).
Article CAS PubMed Google Scholar
Gundersen, K. Growth of Fomes annosus under reduced oxygen pressure and the effect of carbon dioxide. Nature 190, 649–649 (1961).
Article CAS PubMed Google Scholar
Römer, D., Bollazzi, M. & Roces, F. Carbon dioxide sensing in an obligate insect-fungus symbiosis: CO2 preferences of leaf-cutting ants to rear their mutualistic fungus. PLoS ONE 12, e0174597 (2017).
Article PubMed PubMed Central Google Scholar
Teskey, R. O., Saveyn, A., Steppe, K. & McGuire, M. A. Origin, fate and significance of CO2 in tree stems. New Phytol. 177, 17–32 (2008).
Article CAS PubMed Google Scholar
Burges, A. & Fenton, E. The effect of carbon dioxide on the growth of certain soil fungi. Trans. Br. Mycol. Soc. 36, 104–108 (1953).
Buyanovsky, G. A. & Wagner, G. H. Annual cycles of carbon dioxide level in soil air. Soil Sci. Soc. Am. J. 47, 1139–1145 (1983).
留言 (0)