An intranuclear bacterial parasite of deep-sea mussels expresses apoptosis inhibitors acquired from its host

McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gruber-Vodicka, H. R. et al. Two intracellular and cell type-specific bacterial symbionts in the placozoan Trichoplax H2. Nat. Microbiol. 4, 1465–1474 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salje, J. Cells within cells: Rickettsiales and the obligate intracellular bacterial lifestyle. Nat. Rev. Microbiol. 19, 375–390 (2021).

Article  CAS  PubMed  Google Scholar 

Sacchi, L. et al. A symbiont of the tick Ixodes ricinus invades and consumes mitochondria in a mode similar to that of the parasitic bacterium Bdellovibrio bacteriovorus. Tissue Cell 36, 43–53 (2004).

Article  CAS  PubMed  Google Scholar 

Cano, I. et al. Cosmopolitan distribution of Endozoicomonas-like organisms and other intracellular microcolonies of bacteria causing infection in marine mollusks. Front. Microbiol. 11, 1–22 (2020).

Article  CAS  Google Scholar 

Kurahashi, M. & Yokota, A. Endozoicomonas elysicola gen. nov., sp. nov., a γ-proteobacterium isolated from the sea slug Elysia ornata. Syst. Appl. Microbiol. 30, 202–206 (2007).

Article  CAS  PubMed  Google Scholar 

Neave, M. J., Apprill, A., Ferrier-Pagès, C. & Voolstra, C. R. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl. Microbiol. Biotechnol. 100, 8315–8324 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pogoreutz, C. & Ziegler, M. Frenemies on the reef? Resolving the coral–Endozoicomonas association. Trends Microbiol. https://doi.org/10.1016/j.tim.2023.11.006 (2024).

Bartz, J.-O. et al. Parendozoicomonas haliclonae gen. nov. sp. nov. isolated from a marine sponge of the genus Haliclona and description of the family Endozoicomonadaceae fam. nov. comprising the genera Endozoicomonas, Parendozoicomonas, and Kistimonas. Syst. Appl. Microbiol. 41, 73–84 (2018).

Article  PubMed  Google Scholar 

Zielinski, F. U. et al. Widespread occurrence of an intranuclear bacterial parasite in vent and seep bathymodiolin mussels. Environ. Microbiol. 11, 1150–1167 (2009).

Article  CAS  PubMed  Google Scholar 

Husnik, F. et al. Bacterial and archaeal symbioses with protists. Curr. Biol. 31, R862–R877 (2021).

Article  CAS  PubMed  Google Scholar 

Schulz, F. & Horn, M. Intranuclear bacteria: inside the cellular control center of eukaryotes. Trends Cell Biol. 25, 339–346 (2015).

Article  CAS  PubMed  Google Scholar 

Schrallhammer, M. & Potekhin, A. in Symbiosis: Cellular, Molecular, Medical and Evolutionary Aspects Vol. 69 (ed. Kloc, M.) 105–135 (Springer International Publishing, 2020).

Ding, F. et al. Role of mitochondrial pathway in compression-induced apoptosis of nucleus pulposus cells. Apoptosis 17, 579–590 (2012).

Article  CAS  PubMed  Google Scholar 

Tavares, S. et al. Actin stress fiber organization promotes cell stiffening and proliferation of pre-invasive breast cancer cells. Nat. Commun. 8, 15237 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Niebuhr, K. et al. Conversion of PtdIns(4,5)P2 into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J. 21, 5069–5078 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Niebuhr, K. et al. IpgD, a protein secreted by the type III secretion machinery of Shigella flexneri, is chaperoned by IpgE and implicated in entry focus formation. Mol. Microbiol. 38, 8–19 (2000).

Article  CAS  PubMed  Google Scholar 

Dubilier, N., Bergin, C. & Lott, C. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat. Rev. Microbiol. 6, 725–740 (2008).

Article  CAS  PubMed  Google Scholar 

Franke, M., Geier, B., Hammel, J. U., Dubilier, N. & Leisch, N. Coming together—symbiont acquisition and early development in deep-sea bathymodioline mussels. Proc. R. Soc. B 288, 20211044 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Knockenhauer, K. E. & Schwartz, T. U. The nuclear pore complex as a flexible and dynamic gate. Cell 164, 1162–1171 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keller-Costa, T. et al. Metagenomics-resolved genomics provides novel insights into chitin turnover, metabolic specialization, and niche partitioning in the octocoral microbiome. Microbiome 10, 151 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jensen, S. et al. Endozoicomonadaceae symbiont in gills of Acesta clam encodes genes for essential nutrients and polysaccharide degradation. FEMS Microbiol. Ecol. 97, 1–13 (2021).

Article  Google Scholar 

Mondal, M., Nag, D., Koley, H., Saha, D. R. & Chatterjee, N. S. The Vibrio cholerae extracellular chitinase ChiA2 is important for survival and pathogenesis in the host intestine. PLoS ONE 9, e103119 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Seper, A. et al. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation. Mol. Microbiol. 82, 1015–1037 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, L., Zhang, Y., Du, X., An, R. & Liang, X. Escherichia coli can eat DNA as an excellent nitrogen source to grow quickly. Front. Microbiol. 13, 1–13 (2022).

Google Scholar 

Schmitz-esser, S. et al. ATP/ADP translocases: a common feature of obligate intracellular amoebal symbionts related to chlamydiae and rickettsiae. J. Bacteriol. 186, 683–691 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haferkamp, I. et al. Tapping the nucleotide pool of the host: novel nucleotide carrier proteins of Protochlamydia amoebophila. Mol. Microbiol. 60, 1534–1545 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tjaden, J. et al. Two nucleotide transport proteins in Chlamydia trachomatis, one for net nucleoside triphosphate uptake and the other for transport of energy. J. Bacteriol. 181, 1196–1202 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Craig, L., Forest, K. T. & Maier, B. Type IV pili: dynamics, biophysics and functional consequences. Nat. Rev. Microbiol. 17, 429–440 (2019).

Article  CAS  PubMed  Google Scholar 

Nagamine, T. Apoptotic arms races in insect–baculovirus coevolution. Physiol. Entomol. 47, 1–10 (2022).

Article  Google Scholar 

Clem, R. J. Viral IAPs, then and now. Semin. Cell Dev. Biol. 39, 72–79 (2015).

Article  CAS  PubMed  Google Scholar 

Green, D. R. Caspase activation and inhibition. Cold Spring Harb. Perspect. Biol. 14, a041020 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif