Mycobacterium tuberculosis virulence lipid PDIM inhibits autophagy in mice

Aegerter, H., Lambrecht, B. N. & Jakubzick, C. V. Biology of lung macrophages in health and disease. Immunity 55, 1564–1580 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gideon, H. P. et al. Multimodal profiling of lung granulomas in macaques reveals cellular correlates of tuberculosis control. Immunity 55, 827–846.e10 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen, S. B. et al. Alveolar macrophages provide an early Mycobacterium tuberculosis niche and initiate dissemination. Cell Host Microbe 24, 439–446.e4 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rothchild, A. C. et al. Alveolar macrophages generate a noncanonical NRF2-driven transcriptional response. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aaw6693 (2019).

Huang, L., Nazarova, E. V., Tan, S., Liu, Y. & Russell, D. G. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J. Exp. Med. 215, 1135–1152 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pisu, D. et al. Single cell analysis of M. tuberculosis phenotype and macrophage lineages in the infected lung. J. Exp. Med. https://doi.org/10.1084/jem.20210615 (2021).

Pisu, D., Huang, L., Grenier, J. K. & Russell, D. G. Dual RNA-seq of Mtb-infected macrophages in vivo reveals ontologically distinct host–pathogen interactions. Cell Rep. 30, 335–350.e4 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, J. et al. CD11cHi monocyte-derived macrophages are a major cellular compartment infected by Mycobacterium tuberculosis. PLoS Pathog. 16, e1008621 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Norris, B. A. & Ernst, J. D. Mononuclear cell dynamics in M. tuberculosis infection provide opportunities for therapeutic intervention. PLoS Pathog. 14, e1007154 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Zheng, W. et al. Mycobacterium tuberculosis resides in lysosome-poor monocyte-derived lung cells during chronic infection. PLoS Pathog. 20, e1012205 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mishra, B. B. et al. Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis. Nat. Microbiol. 2, 17072 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Niazi, M. K. et al. Lung necrosis and neutrophils reflect common pathways of susceptibility to Mycobacterium tuberculosis in genetically diverse, immune-competent mice. Dis. Model. Mech. 8, 1141–1153 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Kimmey, J. M. et al. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature 528, 565–569 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moreira-Teixeira, L. et al. Type I IFN exacerbates disease in tuberculosis-susceptible mice by inducing neutrophil-mediated lung inflammation and NETosis. Nat. Commun. 11, 5566 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berry, M. P. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466, 973–977 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carvalho, A. C. C. et al. Pre-treatment neutrophil count as a predictor of antituberculosis therapy outcomes: a multicenter prospective cohort study. Front. Immunol. 12, 661934 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lovewell, R. R., Baer, C. E., Mishra, B. B., Smith, C. M. & Sassetti, C. M. Granulocytes act as a niche for Mycobacterium tuberculosis growth. Mucosal Immunol. 14, 229–241 (2021).

Article  CAS  PubMed  Google Scholar 

Tucker Andrews, J. et al. Metabolically active neutrophils represent a permissive niche for Mycobacterium tuberculosis. Mucosal Immunol. https://doi.org/10.1016/j.mucimm.2024.05.007 (2024).

Augenstreich, J. & Briken, V. Host cell targets of released lipid and secreted protein effectors of Mycobacterium tuberculosis. Front. Cell. Infect. Microbiol. 10, 595029 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chandra, P., Grigsby, S. J. & Philips, J. A. Immune evasion and provocation by Mycobacterium tuberculosis. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-022-00763-4 (2022).

Upadhyay, S. & Philips, J. A. LC3-associated phagocytosis: host defense and microbial response. Curr. Opin. Immunol. 60, 81–90 (2019).

Article  CAS  PubMed  Google Scholar 

Sanjuan, M. A. et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253–1257 (2007).

Article  CAS  PubMed  Google Scholar 

Manzanillo, P. S. et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501, 512–516 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franco, L. H. et al. The ubiquitin ligase Smurf1 functions in selective autophagy of Mycobacterium tuberculosis and anti-tuberculous host defense. Cell Host Microbe 22, 421–423 (2017).

Article  CAS  PubMed  Google Scholar 

Gutierrez, M. G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).

Article  CAS  PubMed  Google Scholar 

Watson, R. O., Manzanillo, P. S. & Cox, J. S. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150, 803–815 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, Y. et al. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27, 135–144 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuk, J. M. et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe 6, 231–243 (2009).

Article  CAS  PubMed  Google Scholar 

Mitchell, G. & Isberg, R. R. Innate immunity to intracellular pathogens: balancing microbial elimination and inflammation. Cell Host Microbe 22, 166–175 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsunaga, K. et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 11, 385–396 (2009).

Article  CAS  PubMed  Google Scholar 

Yang, C. S. et al. Autophagy protein Rubicon mediates phagocytic NADPH oxidase activation in response to microbial infection or TLR stimulation. Cell Host Microbe 11, 264–276 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Lam, G. Y., Cemma, M., Muise, A. M., Higgins, D. E. & Brumell, J. H. Host and bacterial factors that regulate LC3 recruitment to Listeria monocytogenes during the early stages of macrophage infection. Autophagy 9, 985–995 (2013).

Article 

留言 (0)

沒有登入
gif