Conventional DMARDs therapy decreases disease activity and inflammation in newly diagnosed patients with rheumatoid arthritis by increasing FoxP3, Sema-3A, and Nrp-1 gene expression

Adi SD, Eiza N, Bejar J et al (2019) Semaphorin 3A is effective in reducing both inflammation and angiogenesis in a mouse model of bronchial asthma. Front Immunol 10:550. https://doi.org/10.3389/fimmu.2019.00550

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alunno A, Manetti M, Caterbi S et al (2015) Altered immunoregulation in rheumatoid arthritis: the role of regulatory T cells and proinflammatory Th17 cells and therapeutic implications. Mediators Inflamm 2015:751793. https://doi.org/10.1155/2015/751793

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alzabin S, Williams RO (2011) Effector T cells in rheumatoid arthritis: lessons from animal models. FEBS Lett 585:3649–3659. https://doi.org/10.1016/j.febslet.2011.04.034

Article  CAS  PubMed  Google Scholar 

Catalano A (2010) The neuroimmune semaphorin-3A reduces inflammation and progression of experimental autoimmune arthritis. J Immunol 185:6373–6383. https://doi.org/10.4049/jimmunol.0903527

Article  CAS  PubMed  Google Scholar 

Cozacov R, Halasz K, Haj T et al (2017) Semaphorin 3A: is a key player in the pathogenesis of asthma. Clin Immunol 184:70–72. https://doi.org/10.1016/j.clim.2017.05.011

Article  CAS  PubMed  Google Scholar 

Garcia S (2019) Role of semaphorins in immunopathologies and rheumatic diseases. Int J Mol Sci 20:374. https://doi.org/10.3390/ijms20020374

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gerards AH, de Lathouder S, de Groot ER et al (2003) Inhibition of cytokine production by methotrexate. Studies in healthy volunteers and patients with rheumatoid arthritis. Rheumatology (Oxford) 42:1189–1196. https://doi.org/10.1093/rheumatology/keg323

Article  CAS  PubMed  Google Scholar 

Haque M, Fino K, Lei F et al (2014) Utilizing regulatory T cells against rheumatoid arthritis. Front Oncol 4:209. https://doi.org/10.3389/fonc.2014.00209

Article  PubMed  PubMed Central  Google Scholar 

Hashizume M, Mihara M (2011) The roles of interleukin-6 in the pathogenesis of rheumatoid arthritis. Arthritis 2011:765624. https://doi.org/10.1155/2011/765624

Article  PubMed  PubMed Central  Google Scholar 

Ji JD, Park-Min KH, Ivashkiv LB (2009) Expression and function of semaphorin 3A and its receptors in human monocyte-derived macrophages. Hum Immunol 70:211–217. https://doi.org/10.1016/j.humimm.2009.01.026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalmarzi RN, Rajabinejad M, Lotfi R (2020) Immune semaphorins: crucial regulatory signals and novel therapeutic targets in asthma and allergic diseases. Eur J Pharmacol 881:173209. https://doi.org/10.1016/j.ejphar.2020.173209

Article  CAS  PubMed  Google Scholar 

Kay J, Upchurch KS (2012) ACR/EULAR 2010 rheumatoid arthritis classification criteria. Rheumatology (Oxford) 51(Suppl 6):vi5-9. https://doi.org/10.1093/rheumatology/kes279

Article  PubMed  Google Scholar 

Koda T, Okuno T, Takata K et al (2014) Sema4A inhibits the therapeutic effect of IFN-β in EAE. J Neuroimmunol 268:43–49. https://doi.org/10.1016/j.jneuroim.2013.12.014

Article  CAS  PubMed  Google Scholar 

Kumanogoh A, Kikutani H (2013) Immunological functions of the neuropilins and plexins as receptors for semaphorins. Nat Rev Immunol 13:802–814. https://doi.org/10.1038/nri3545

Article  CAS  PubMed  Google Scholar 

Kumanogoh A, Shikina T, Suzuki K et al (2005) Nonredundant roles of Sema4A in the immune system: defective T cell priming and Th1/Th2 regulation in Sema4A-deficient mice. Immunity 22:305–316. https://doi.org/10.1016/j.immuni.2005.01.014

Article  CAS  PubMed  Google Scholar 

Lotfi R, Nasiri Kalmarzi R, Rajabinejad M et al (2021) The role of immune semaphorins in the pathogenesis of multiple sclerosis: potential therapeutic targets. Int Immunopharmacol 95:107556. https://doi.org/10.1016/j.intimp.2021.107556

Article  CAS  PubMed  Google Scholar 

Lotfi R, Zamanimehr N (2022) Semaphorin-3A: a promising therapeutic tool in allergic rhinitis. Immunol Res 70:135–142. https://doi.org/10.1007/s12026-022-09264-1

Article  CAS  PubMed  Google Scholar 

McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219. https://doi.org/10.1056/NEJMra1004965

Article  CAS  PubMed  Google Scholar 

Nishide M, Kumanogoh A (2018) The role of semaphorins in immune responses and autoimmune rheumatic diseases. Nat Rev Rheumatol 14:19–31. https://doi.org/10.1038/nrrheum.2017.201

Article  CAS  PubMed  Google Scholar 

Nojima S, Kumanogoh A (2015) Semaphorins in the immune system. In: Kumanogoh A (ed) Semaphorins. Springer, Tokyo, pp 137–157

Chapter  Google Scholar 

Nojima S, Kumanogoh A (2017) The roles of neuropilins in the immune system. In: Neufeld G, Kessler O (eds) The neuropilins: role and function in health and disease. Springer International Publishing, Cham, pp 151–160

Chapter  Google Scholar 

Okamoto A, Fujio K, Okamura T et al (2011) Regulatory T-cell-associated cytokines in systemic lupus erythematosus. J Biomed Biotechnol 2011:463412. https://doi.org/10.1155/2011/463412

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. https://doi.org/10.1093/nar/29.9.e45

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rezaeepoor M, Shapoori S, Ganjalikhani-Hakemi M et al (2017) Decreased expression of Sema3A, an immune modulator, in blood sample of multiple sclerosis patients. Gene 610:59–63. https://doi.org/10.1016/j.gene.2017.02.013

Article  CAS  PubMed  Google Scholar 

Rimar D, Nov Y, Rosner I et al (2015) Semaphorin 3A: an immunoregulator in systemic sclerosis. Rheumatol Int 35:1625–1630. https://doi.org/10.1007/s00296-015-3269-2

Article  CAS  PubMed  Google Scholar 

Roghani SA, Lotfi R, Soleymani B et al (2023a) Investigating the correlation of the NF-κB and FoxP3 gene expression with the plasma levels of pro- and anti-inflammatory cytokines in rheumatoid arthritis patients. Clin Rheumatol 42:1443–1450. https://doi.org/10.1007/s10067-023-06521-y

Article  PubMed  Google Scholar 

Roghani SA, Lotfi R, Soroush MG et al (2023b) Increased gene expression of CCR6 and RORγt in peripheral blood cells of rheumatoid arthritis patients and their correlation with anti-cyclic citrullinated peptide and disease activity. Immun Inflamm Dis 11:e1112. https://doi.org/10.1002/iid3.1112

Article  PubMed  PubMed Central  Google Scholar 

Sakaguchi S, Yamaguchi T, Nomura T et al (2008) Regulatory T cells and immune tolerance. Cell 133:775–787. https://doi.org/10.1016/j.cell.2008.05.009

Article  CAS  PubMed  Google Scholar 

Suzuki K, Setoyama Y, Yoshimoto K et al (2011) Decreased mRNA expression of two FOXP3 isoforms in peripheral blood mononuclear cells from patients with rheumatoid arthritis and systemic lupus erythematosus. Int J Immunopathol Pharmacol 24:7–14. https://doi.org/10.1177/039463201102400102

Article 

留言 (0)

沒有登入
gif