Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12–49.
Pizzato M, Li M, Vignat J, Laversanne M, Singh D, La Vecchia C, Vaccarella S. The epidemiological landscape of thyroid cancer worldwide: GLOBOCAN estimates for incidence and mortality rates in 2020. Lancet Diabetes Endocrinol. 2022;10(4):264–72.
LeClair K, Bell KJL, Furuya-Kanamori L, Doi SA, Francis DO, Davies L. Evaluation of gender inequity in thyroid cancer diagnosis: differences by sex in US thyroid cancer incidence compared with a meta-analysis of subclinical thyroid cancer rates at autopsy. JAMA internal medicine. 2021;181(10):1351–8.
Chen DW, Lang BHH, McLeod DSA, Newbold K, Haymart MR. Thyroid cancer. Lancet (London, England). 2023;401(10387):1531–44.
Boucai L, Zafereo M, Cabanillas ME. Thyroid cancer: a review. JAMA. 2024;331(5):425–35.
Erler P, Keutgen XM, Crowley MJ, Zetoune T, Kundel A, Kleiman D, Beninato T, Scognamiglio T, Elemento O, Zarnegar R, et al. Dicer expression and microRNA dysregulation associate with aggressive features in thyroid cancer. Surgery. 2014;156(6):1342–50; discussion 1350.
Gugnoni M, Manicardi V, Torricelli F, Sauta E, Bellazzi R, Manzotti G, Vitale E, de Biase D, Piana S, Ciarrocchi A. Linc00941 is a novel transforming growth factor β target that primes papillary thyroid cancer metastatic behavior by regulating the expression of cadherin 6. Thyroid. 2021;31(2):247–63.
Guo K, Qian K, Shi Y, Sun T, Wang Z. LncRNA-MIAT promotes thyroid cancer progression and function as ceRNA to target EZH2 by sponging miR-150-5p. Cell Death Dis. 2021;12(12):1097.
CAS PubMed PubMed Central Google Scholar
Tan J, Liu L, Zuo Z, Song B, Cai T, Ding D, Lu Y, Ye X. Overexpression of novel long intergenic non-coding RNA LINC02454 is associated with a poor prognosis in papillary thyroid cancer. Oncol Rep. 2020;44(4):1489–501.
CAS PubMed PubMed Central Google Scholar
Cao Y, Li J, Du Y, Sun Y, Liu L, Fang H, Liang Y, Mao S. LINC02454 promotes thyroid carcinoma progression via upregulating HMGA2 through CREB1. FASEB J. 2023;37(12):e23288.
Chen B, Weng Y, Li M, Bian Z, Tao Y, Zhou W, Lu H, He S, Liao R, Huang J, et al. LINC02454-CCT complex interaction is essential for telomerase activity and cell proliferation in head and neck squamous cell carcinoma. Cancer Lett. 2024;588:216734.
Zhu Q, Zhang R, Lu F, Zhang X, Zhang D, Zhang Y, Chen E, Han F, Zha D. Cuproptosis-related LINC02454 as a biomarker for laryngeal squamous cell carcinoma based on a novel risk model and in vitro and in vivo analyses. J Cancer Res Clin Oncol. 2023;149(16):15185–206.
Ottone T, Silvestrini G, Piazza R, Travaglini S, Gurnari C, Marchesi F, Nardozza AM, Fabiani E, Attardi E, Guarnera L, et al. Expression profiling of extramedullary acute myeloid leukemia suggests involvement of epithelial-mesenchymal transition pathways. Leukemia. 2023;37(12):2383–94.
Chen X, Wang R, Xu T, Zhang Y, Li H, Du C, Wang K, Gao Z. Identification of candidate genes associated with papillary thyroid carcinoma pathogenesis and progression by weighted gene co-expression network analysis. Translational cancer research. 2021;10(2):694–713.
CAS PubMed PubMed Central Google Scholar
Gu Y, Huang K, Zhang M, Teng F, Ge L, Zhou J, Xu J, Jia X. Long noncoding RNA CTD-2589M5.4 inhibits ovarian cancer cell proliferation, migration, and invasion via downregulation of the extracellular matrix-receptor interaction pathway. Cancer biotherapy and radiopharmaceuticals. 2022;37(7):580–8.
Zhang QJ, Li DZ, Lin BY, Geng L, Yang Z, Zheng SS. SNHG16 promotes hepatocellular carcinoma development via activating ECM receptor interaction pathway. Hepatobiliary Pancreat Dis Int. 2022;21(1):41–9.
Chen C, Ye L, Yi J, Liu T, Li Z. Correction: FN1-mediated activation of aspartate metabolism promotes the progression of triple-negative and luminal a breast cancer. Breast Cancer Res Treat. 2024;204(2):425–7.
Hiroshima Y, Kasajima R, Kimura Y, Komura D, Ishikawa S, Ichikawa Y, Bouvet M, Yamamoto N, Oshima T, Morinaga S, et al. el targets identified by integrated cancer-stromal interactome analysis of pancreatic adenocarcinoma. Cancer Lett. 2020;469:217–27.
Jiang Y, Liu Y, Zhang Y, Ouyang J, Feng Y, Li S, Wang J, Zhang C, Tan L, Zhong J, et al. MicroRNA-142-3P suppresses the progression of papillary thyroid carcinoma by targeting FN1 and inactivating FAK/ERK/PI3K signaling. Cell Signal. 2023;109:110792.
Nieto HR, Thornton CEM, Brookes K, Nobre de Menezes A, Fletcher A, Alshahrani M, Kocbiyik M, Sharma N, Boelaert K, Cazier JB, et al. Recurrence of papillary thyroid cancer: a systematic appraisal of risk factors. The Journal of clinical endocrinology and metabolism. 2022;107(5):1392–406.
Islam MK, Syed P, Dhondt B, Gidwani K, Pettersson K, Lamminmäki U, Leivo J. Detection of bladder cancer with aberrantly fucosylated ITGA3. Anal Biochem. 2021;628:114283.
Zheng X, Du Y, Liu M, Wang C. ITGA3 acts as a purity-independent biomarker of both immunotherapy and chemotherapy resistance in pancreatic cancer: bioinformatics and experimental analysis. Funct Integr Genomics. 2023;23(2):196.
CAS PubMed PubMed Central Google Scholar
Guo K, Qian K, Shi Y, Sun T, Chen L, Mei D, Dong K, Gu S, Liu J, Lv Z, et al. Clinical and molecular characterizations of papillary thyroid cancer in children and young adults: a multicenter retrospective study. Thyroid. 2021;1(11):1693–706.
Mautone L, Ferravante C, Tortora A, Tarallo R, Giurato G, Weisz A, Vitale M. Higher integrin alpha 3 beta1 expression in papillary thyroid cancer is associated with worst outcome. Cancers. 2021;13(12):2937.
CAS PubMed PubMed Central Google Scholar
Wattanathavorn W, Seki M, Suzuki Y, Buranapraditkun S, Kitkumthorn N, Sasivimolrattana T, Bhattarakosol P, Chaiwongkot A. Downregulation of LAMB3 Altered the Carcinogenic Properties of Human Papillomavirus 16-Positive Cervical Cancer Cells. Int J Mol Sci. 2024;25(5):2535.
CAS PubMed PubMed Central Google Scholar
Sari B, Gulbey O, Hamill KJ. Laminin 332 expression levels predict clinical outcomes and chemotherapy response in patients with pancreatic adenocarcinoma. Front Cell Dev Biol. 2023;11:1242706.
PubMed PubMed Central Google Scholar
Jung SN, Lim HS, Liu L, Chang JW, Lim YC, Rha KS, Koo BS. LAMB3 mediates metastatic tumor behavior in papillary thyroid cancer by regulating c-MET/Akt signals. Sci Rep. 2018;8(1):2718.
PubMed PubMed Central Google Scholar
Onyeisi JOS, Lopes CC, Götte M. Syndecan-4 as a pathogenesis factor and therapeutic target in cancer. Biomolecules. 2021;11(4):503.
CAS PubMed PubMed Central Google Scholar
Yang H, Liu Y, Zhao MM, Guo Q, Zheng XK, Liu D, Zeng KW, Tu PF. Therapeutic potential of targeting membrane-spanning proteoglycan SDC4 in hepatocellular carcinoma. Cell Death Dis. 2021;12(5):492.
CAS PubMed PubMed Central Google Scholar
Jechorek D, Haeusler-Pliske I, Meyer F, Roessner A. Diagnostic value of syndecan-4 protein expression in colorectal cancer. Pathol Res Pract. 2021;222:153431.
Kim S, Han Y, Kim SI, Lee J, Jo H, Wang W, Cho U, Park WY, Rando TA, Dhanasekaran DN, et al. Computational modeling of malignant ascites reveals CCL5-SDC4 interaction in the immune microenvironment of ovarian cancer. Mol Carcinog. 2021;60(5):297–312.
CAS PubMed PubMed Central Google Scholar
Chen LL, Gao GX, Shen FX, Chen X, Gong XH, Wu WJ. SDC4 Gene silencing favors human papillary thyroid carcinoma cell apoptosis and inhibits epithelial mesenchymal transition via Wnt/β-catenin pathway. Mol Cells. 2018;41(9):853–67.
CAS PubMed PubMed Central Google Scholar
Frenay J, Bellaye PS, Oudot A, Helbling A, Petitot C, Ferrand C, Collin B, Dias AMM. IL-1RAP, a key therapeutic target in cancer. Int J Mol Sci. 2022;23(23):14918.
CAS PubMed PubMed Central Google Scholar
Zhang HF, Hughes CS, Li W, He JZ, Surdez D, El-Naggar AM, Cheng H, Prudova A, Delaidelli A, Negri GL, et al. Proteomic screens for suppressors of anoikis identify IL1RAP as a promising surface target in Ewing Sarcoma. Cancer Discov. 2021;11(11):2884–903.
留言 (0)