Oriowo MA, Oommen E, Khan I. Hyperthyroidism enhances 5-HT-induced contraction of the rat pulmonary artery: role of calcium-activated chloride channel activation. Eur J Pharmacol. 2011;669(1–3):108–14.
Article CAS PubMed Google Scholar
Hassanpour H, Afzali A, Fatemi Tabatabaie R, Torabi M, Alavi Y. Cardiac renin-angiotensin system (gene expression) and plasma Ang II in chickens with T3-induced pulmonary hypertension. Br Poult Sci. 2016;57(4):444–50.
Article CAS PubMed Google Scholar
Basset A, Blanc J, Messas E, Hagège A, Elghozi JL. Renin-angiotensin system contribution to cardiac hypertrophy in experimental hyperthyroidism: an echocardiographic study. J Cardiovasc Pharmacol. 2001;37(2):163–72.
Article CAS PubMed Google Scholar
Asahi T, Shimabukuro M, Oshiro Y, Yoshida H, Takasu N. Cilazapril prevents cardiac hypertrophy and postischemic myocardial dysfunction in hyperthyroid rats. Thyroid. 2001;11(11):1009–15.
Article CAS PubMed Google Scholar
Kobori H, Ichihara A, Miyashita Y, Hayashi M, Saruta T. Mechanism of hyperthyroidism-induced renal hypertrophy in rats. J Endocrinol. 1998;159(1):9.
Article CAS PubMed PubMed Central Google Scholar
Carneiro-Ramos MS, Silva VB, Santos RA, Barreto-Chaves ML. Tissue-specific modulation of angiotensin-converting enzyme (ACE) in hyperthyroidism. Peptides. 2006;27(11):2942–9.
Article CAS PubMed Google Scholar
Rodríguez-Gómez I, Manuel Moreno J, Jimenez R, Quesada A, Montoro-Molina S, Vargas-Tendero P, Wangensteen R, Vargas F. Effects of arginase inhibition in hypertensive hyperthyroid rats. Am J Hypertens. 2015;28(12):1464–72.
Rodriguez-Gomez I, Banegas I, Wangensteen R, Quesada A, Jiménez R, Gómez-Morales M, O’Valle F, Duarte J, Vargas F. Influence of thyroid state on cardiac and renal capillary density and glomerular morphology in rats. J Endocrinol. 2013;216(1):43–51.
Article CAS PubMed Google Scholar
Kobori H, Ichihara A, Miyashita Y, Hayashi M, Saruta T. Local renin–angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy. J Endocrinol. 1999;160(1):43.
Article CAS PubMed PubMed Central Google Scholar
Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59(3):251–87.
Article CAS PubMed Google Scholar
Kaltenecker CC, Domenig O, Kopecky C, Antlanger M, Poglitsch M, Berlakovich G, Kain R, Stegbauer J, Rahman M, Hellinger R, Gruber C. Critical role of neprilysin in kidney angiotensin metabolism. Circul Res. 2020;127(5):593–606.
Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme: cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000;275(43):33238–43.
Article CAS PubMed Google Scholar
Santos RA, e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proceedings of the National Academy of Sciences. 2003; 100(14):8258-63.
Chappell MC, Modrall JG, Diz DI, Ferrario CM. Novel aspects of the renal renin-angiotensin system: angiotensin-(1–7), ACE2 and blood pressure regulation. Kidney Blood Press Regul. 2004;143:77–89.
da Silveira KD, Pompermayer Bosco KS, Diniz LR, Carmona AK, Cassali GD, Bruna-Romero O, de Sousa LP, Teixeira MM, Santos RA. Simões E Silva AC, Ribeiro Vieira MA. ACE2–angiotensin-(1–7)-Mas axis in renal ischaemia/reperfusion injury in rats. Clin Sci. 2010;119(9):385–94.
Simões e Silva AC, Silveira KD, Ferreira AJ, Teixeira MM. ACE2, angiotensin-(1‐7) and M as receptor axis in inflammation and fibrosis. Br J Pharmacol. 2013;169(3):477–92.
Article PubMed PubMed Central Google Scholar
Diniz GP, Senger N, Carneiro-Ramos MS, Santos RA, Barreto-Chaves ML. Cardiac ACE2/angiotensin 1–7/Mas receptor axis is activated in thyroid hormone-induced cardiac hypertrophy. Ther Adv Cardiovasc Dis. 2016;10(4):192–202.
Article CAS PubMed Google Scholar
Senger N, Melo MB, Santos MJ, Santos RA, Barreto-Chaves ML. Angiotensin‐(1–7) prevents cardiovascular changes induced by hyperthyroidism. FASEB J. 2017;31:lb642.
Papinska AM, Mordwinkin NM, Meeks CJ, Jadhav S, Rodgers KE. Angiotensin-(1–7) administration benefits cardiac, renal and progenitor cell function in db/db mice. Br J Pharmacol. 2015;172(18):4443–53.
Article CAS PubMed PubMed Central Google Scholar
Shi Y, Lo CS, Padda R, Abdo S, Chenier I, Filep JG, Ingelfinger JR, Zhang SL, Chan JS. Angiotensin-(1–7) prevents systemic hypertension, attenuates oxidative stress and tubulointerstitial fibrosis, and normalizes renal angiotensin-converting enzyme 2 and Mas receptor expression in diabetic mice. Clin Sci. 2015;128(10):649–63.
Amato D, Núñez-Ortiz AR, del Benítez-Flores C, Segura-Cobos J, López-Sánchez D, Vázquez-Cruz P. Role of Angiotensin-(1–7) on renal hypertrophy in Streptozotocin-Induced Diabetes Mellitus. Pharmacol Pharm. 2016;7(09):379.
Shao Y, He M, Zhou L, Yao T, Huang Y, LU LM. Chronic angiotensin (1–7) injection accelerates STZ-induced diabetic renal injury 1. Acta Pharmacol Sin. 2008;29(7):829–37.
Article CAS PubMed Google Scholar
Esteban V, Heringer-Walther S, Sterner-Kock A, de Bruin R, van den Engel S, Wang Y, Mezzano S, Egido J, Schultheiss HP, Ruiz-Ortega M, Walther T. Angiotensin-(1–7) and the g protein-coupled receptor MAS are key players in renal inflammation. PLoS ONE. 2009;4(4):e5406.
Article PubMed PubMed Central Google Scholar
Zimmerman DL, Zimpelmann J, Xiao F, Gutsol A, Touyz R, Burns KD. The effect of angiotensin-(1–7) in mouse unilateral ureteral obstruction. Am J Pathol. 2015;185(3):729–40.
Article CAS PubMed Google Scholar
Papinska AM, Rodgers KE. Long-term administration of angiotensin (1–7) to db/db mice reduces oxidative stress damage in the kidneys and prevents renal dysfunction. Oxidative Med Cell Longev. 2018;2018(1):1841046.
Devonshire IM, Grandy TH, Dommett EJ, Greenfield SA. Effects of urethane anaesthesia on sensory processing in the rat barrel cortex revealed by combined optical imaging and electrophysiology. Eur J Neurosci. 2010 (5):786–97.
Malatiali S, Francis I, Barac-Nieto M. Phlorizin prevents glomerular hyperfiltration but not Hypertrophy in Diabetic rats. Experimental Diabetes Res. 2008;2008:305–403.
Sabolić I, Vrhovac I, Eror DB, Gerasimova M, Rose M, Breljak D, Ljubojević M, Brzica H, Sebastiani A, Thal SC, Sauvant C. Expression of Na+-D-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences. Am J Physiology-Cell Physiol. 2012;302(8):C1174–88.
Aldridge GM, Podrebarac DM, Greenough WT, Weiler IJ. The use of total protein stains as loading controls: an alternative to high-abundance single-protein controls in semi-quantitative immunoblotting. J Neurosci Methods. 2008;172(2):250–4.
Article CAS PubMed PubMed Central Google Scholar
Bruinstroop E, van der Spek AH, Boelen A. Role of hepatic deiodinases in thyroid hormone homeostasis and liver metabolism, inflammation, and fibrosis. Eur Thyroid J. 2023; 12(3).
Naguib R, Elkemary E. Thyroid dysfunction and renal function: a crucial relationship to recognize. Cureus. 2023;15(2).
Wang W, Li C, Summer SN, Falk S, Schrier RW. Polyuria of thyrotoxicosis: downregulation of aquaporin water channels and increased solute excretion. Kidney Int. 2007;72(9):1088–94.
Article CAS PubMed Google Scholar
Rodríguez-Gómez I, Sainz J, Wangensteen R, Moreno JM, Duarte J, Osuna A, Vargas F. Increased pressor sensitivity to chronic nitric oxide deficiency in hyperthyroid rats. Hypertension. 2003;42(2):220–5.
Ren Y, Garvin JL, Carretero OA. Vasodilator action of angiotensin-(1–7) on isolated rabbit afferent arterioles. Hypertension. 2002;39(3):799–802.
Article CAS PubMed Google Scholar
Sampaio WO, Nascimento AA, Santos RA. Systemic and regional hemodynamic effects of angiotensin-(1–7) in rats. Am J Physiol Heart Circ Physiol. 2003;284(6):H1985–94.
留言 (0)