Giuffrida D, Gharib H. Anaplastic thyroid carcinoma: current diagnosis and treatment. Ann Oncol. 2000;11(9):1083–90.
Article CAS PubMed Google Scholar
Chintakuntlawar AV, Foote RL, Kasperbauer JL, Bible KC. Diagnosis and management of anaplastic thyroid cancer. Endocrinol Metab Clin. 2019;48(1):269–84.
Jayarangaiah A, Sidhu G, Brown J, Barrett-Campbell O, Bahtiyar G, Youssef I, et al. Therapeutic options for advanced thyroid cancer. Int J Endocrinol Metab. 2019;5(1):26.
Tiedje V, Stuschke M, Weber F, Dralle H, Moss L, Führer D. Anaplastic thyroid carcinoma: review of treatment protocols. Endocr Relat Cancer. 2018;25(3):R153–61.
Article CAS PubMed Google Scholar
Maniakas A, Dadu R, Busaidy NL, Wang JR, Ferrarotto R, Lu C, et al. Evaluation of overall survival in patients with anaplastic thyroid carcinoma, 2000–2019. JAMA Oncol. 2020;6(9):1397–404.
Marei HE, Althani A, Afifi N, Hasan A, Caceci T, Pozzoli G, et al. p53 signaling in cancer progression and therapy. Cancer Cell Int. 2021;21(1):1–15.
Edlund K, Larsson O, Ameur A, Bunikis I, Gyllensten U, Leroy B, et al. Data-driven unbiased curation of the TP53 tumor suppressor gene mutation database and validation by ultradeep sequencing of human tumors. PNAS. 2012;109(24):9551–6.
Article CAS PubMed PubMed Central Google Scholar
Fagin JA, Matsuo K, Karmakar A, Chen DL, Tang S-H, Koeffler H. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Investig. 1993;91(1):179–84.
Article CAS PubMed PubMed Central Google Scholar
Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 2009;9(10):701–13.
Article CAS PubMed Google Scholar
Wei S, Wang H, Lu C, Malmut S, Zhang J, Ren S, et al. The activating transcription factor 3 protein suppresses the oncogenic function of mutant p53 proteins. J Biol Chem. 2014;289(13):8947–59.
Article CAS PubMed PubMed Central Google Scholar
Muller PA, Vousden KH, Norman JC. p53 and its mutants in tumor cell migration and invasion. J Cell Biol. 2011;192(2):209–18.
Article CAS PubMed PubMed Central Google Scholar
Wu G, Nomoto S, Hoque MO, Dracheva T, Osada M, Lee C-CR, et al. ∆Np63α and TAp63α regulate transcription of genes with distinct biological functions in cancer and development. Cancer Res. 2003;63(10):2351–7.
Candi E, Dinsdale D, Rufini A, Salomoni P, Knight RA, Mueller M, et al. TAp63 and ∆Np63 in cancer and epidermal development. Cell Cycle. 2007;6(3):274–84.
Article CAS PubMed Google Scholar
Sun H, Ghaffari S, Taneja R. bHLH-Orange transcription factors in development and cancer. Transl Oncogenomics. 2007;2:107.
Article PubMed PubMed Central Google Scholar
Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, et al. A mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell. 2009;137(1):87–98.
Article CAS PubMed Google Scholar
Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol. 2001;21(5):1874–87.
Article CAS PubMed PubMed Central Google Scholar
Yuan X, Yu L, Li J, Xie G, Rong T, Zhang L, et al. ATF3 suppresses metastasis of bladder Cancer by regulating gelsolin-mediated remodeling of the actin CytoskeletonATF3 suppresses the metastasis of bladder Cancer. Cancer Res. 2013;73(12):3625–37.
Article CAS PubMed Google Scholar
Jan Y-H, Tsai H-Y, Yang C-J, Huang M-S, Yang Y-F, Lai T-C, et al. Adenylate Kinase-4 is a marker of poor clinical outcomes that promotes metastasis of Lung Cancer by downregulating the transcription factor ATF3AK4 downregulates ATF3 to promote Lung Cancer Cell Metastasis. Cancer Res. 2012;72(19):5119–29.
Article CAS PubMed Google Scholar
Hackl C, Lang SA, Moser C, Mori A, Fichtner-Feigl S, Hellerbrand C, et al. Activating transcription factor-3 (ATF3) functions as a tumor suppressor in colon cancer and is up-regulated upon heat-shock protein 90 (Hsp90) inhibition. BMC Cancer. 2010;10:1–9.
Wang H, Mo P, Ren S, Yan C. Activating transcription factor 3 activates p53 by preventing E6-associated protein from binding to E6. J Biol Chem. 2010;285(17):13201–10.
Article CAS PubMed PubMed Central Google Scholar
Gargiulo G, Cesaroni M, Serresi M, de Vries N, Hulsman D, Bruggeman SW, et al. In vivo RNAi screen for BMI1 targets identifies TGF-β/BMP-ER stress pathways as key regulators of neural-and malignant glioma-stem cell homeostasis. Cancer Cell. 2013;23(5):660–76.
Article CAS PubMed Google Scholar
Akbarpour Arsanjani A, Abuei H, Behzad-Behbahani A, Bagheri Z, Arabsolghar R, Farhadi A. Activating transcription factor 3 inhibits NF–κB p65 signaling pathway and mediates apoptosis and cell cycle arrest in cervical cancer cells. Infect Agents Cancer. 2022;17(1):1–10.
Kooti A, Abuei H, Farhadi A, Behzad-Behbahani A, Zarrabi M. Activating transcription factor 3 mediates apoptotic functions through a p53-independent pathway in human papillomavirus 18 infected HeLa cells. Virus Genes. 2022;58(2):88–97.
Article CAS PubMed Google Scholar
Yin X, Dewille J, Hai T. A potential dichotomous role of ATF3, an adaptive-response gene, in cancer development. Oncogene. 2008;27(15):2118–27.
Article CAS PubMed Google Scholar
Wu X, Nguyen B-C, Dziunycz P, Chang S, Brooks Y, Lefort K, et al. Opposing roles for calcineurin and ATF3 in squamous skin cancer. Nature. 2010;465(7296):368–72.
Article CAS PubMed PubMed Central Google Scholar
Xiao X, Chen M, Sang Y, Xue J, Jiang K, Chen Y, et al. Methylation-mediated silencing of ATF3 promotes thyroid cancer progression by regulating prognostic genes in the MAPK and PI3K/AKT pathways. Thyroid. 2023;33(12):1441–54.
Article CAS PubMed Google Scholar
Laemmli UK. Cleavage of structural proteins during the Assembly of the Head of Bacteriophage T4. Nature. 1970;227(5259):680–5.
Article CAS PubMed Google Scholar
Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29(9):e45–e.
Article CAS PubMed PubMed Central Google Scholar
Guenzle J, Wolf LJ, Garrelfs NW, Goeldner JM, Osterberg N, Schindler CR, et al. ATF3 reduces migration capacity by regulation of matrix metalloproteinases via NFκB and STAT3 inhibition in glioblastoma. Cell Death Discov. 2017;3(1):1–12.
Campisi A, Bonfanti R, Raciti G, Bonaventura G, Legnani L, Magro G, et al. Gene silencing of transferrin-1 receptor as a potential therapeutic target for human follicular and anaplastic thyroid cancer. Mol Ther Oncolytics. 2020;16:197–206.
Article CAS PubMed PubMed Central Google Scholar
Yan C, Boyd DD. ATF3 regulates the stability of p53: a link to cancer. Cell Cycle. 2006;5(9):926–9.
留言 (0)