Earle, K. et al. Pathogenicity and virulence of Aspergillus fumigatus. Virulence 14, 2172264 (2023).
Article PubMed PubMed Central Google Scholar
Rokas, A. et al. Evolving moldy murderers: Aspergillus section Fumigati as a model for studying the repeated evolution of fungal pathogenicity. PLoS Pathog. 16, e1008315 (2020).
Article CAS PubMed PubMed Central Google Scholar
Bayry, J. et al. Surface structure characterization of Aspergillus fumigatus conidia mutated in the melanin synthesis pathway and their human cellular immune response. Infect. Immun. 82, 3141–3153 (2014).
Article PubMed PubMed Central Google Scholar
Heinekamp, T. et al. Interference of Aspergillus fumigatus with the immune response. Semin. Immunopathol. 37, 141–152 (2015).
Article CAS PubMed Google Scholar
Blango, M. G. et al. Dynamic surface proteomes of allergenic fungal conidia. J. Proteome Res. 19, 2092–2104 (2020).
Article CAS PubMed Google Scholar
Aimanianda, V. et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460, 1117–1121 (2009).
Article CAS PubMed Google Scholar
Valsecchi, I. et al. Role of hydrophobins in Aspergillus fumigatus. J. Fungi 4, 2 (2017).
Voltersen, V. et al. Proteome analysis reveals the conidial surface protein CcpA essential for virulence of the pathogenic fungus Aspergillus fumigatus. mBio 9, e01557-18 (2018).
Article PubMed PubMed Central Google Scholar
Jia, L. J. et al. Aspergillus fumigatus hijacks human p11 to redirect fungal-containing phagosomes to non-degradative pathway. Cell Host Microbe 31, 373–388 (2023).
Article CAS PubMed PubMed Central Google Scholar
Asif, A. R. et al. Proteome of conidial surface associated proteins of Aspergillus fumigatus reflecting potential vaccine candidates and allergens. J. Proteome Res. 5, 954–962 (2006).
Article CAS PubMed Google Scholar
Jia, L. J. et al. Biotinylated surfome profiling identifies potential biomarkers for diagnosis and therapy of Aspergillus fumigatus infection. mSphere 5, e00535-20 (2020).
Article PubMed PubMed Central Google Scholar
Suh, M. J. et al. Development stage-specific proteomic profiling uncovers small, lineage specific proteins most abundant in the Aspergillus fumigatus conidial proteome. Prot. Sci. 10, 30 (2012).
Venugopalan, L. P. et al. Comparative proteome analysis identifies species-specific signature proteins in Aspergillus pathogens. Appl. Microbiol. Biotechnol. 107, 4025–4040 (2023).
Article CAS PubMed Google Scholar
Yu, S. Y. et al. Clinical and microbiological characterization of invasive pulmonary aspergillosis caused by Aspergillus lentulus in China. Front. Microbiol. 11, 1672 (2020).
Article PubMed PubMed Central Google Scholar
Houbraken, J., Weig, M. & Groβ, U. Aspergillus oerlinghausenensis, a new mould species closely related to A. fumigatus. FEMS Microbiol. Lett. 363, fnv236 (2016).
Steenwyk, J. L. et al. Variation among biosynthetic gene clusters, secondary metabolite profiles, and cards of virulence across Aspergillus species. Genetics 216, 481–497 (2020).
Article CAS PubMed PubMed Central Google Scholar
Mead, M. E. et al. Characterizing the pathogenic, genomic, and chemical traits of Aspergillus fischeri, a close relative of the major human fungal pathogen Aspergillus fumigatus. mSphere 4, e00018-19 (2019).
Article PubMed PubMed Central Google Scholar
Thywißen, A. et al. Conidial dihydroxynaphthalene melanin of the human pathogenic fungus Aspergillus fumigatus interferes with the host endocytosis pathway. Front. Microbiol. 2, 96 (2011).
Article PubMed PubMed Central Google Scholar
Horta, M. A. C. et al. Examination of genome-wide ortholog variation in clinical and environmental isolates of the fungal pathogen Aspergillus fumigatus. mBio 13, e0151922 (2022).
Baltussen, T. J. H. et al. The C2H2 transcription factor SltA is required for germination and hyphal development in Aspergillus fumigatus. mSphere 1, e0007623 (2023).
Zhao, C. et al. High-throughput gene replacement in Aspergillus fumigatus. Curr. Protoc. Microbiol. 54, e88 (2019).
Article CAS PubMed PubMed Central Google Scholar
Mead, M. E. et al. An evolutionary genomic approach reveals both conserved and species-specific genetic elements related to human disease in closely related Aspergillus fungi. Genetics 218, iyab066 (2021).
Article PubMed PubMed Central Google Scholar
Latgé, J. P. & Chamilos, G. Aspergillus fumigatus and aspergillosis in 2019. Clin. Microbiol. Rev. 33, e00140–18 (2019).
Article PubMed PubMed Central Google Scholar
Shifrin, S., Parrott, C. L. & Luborsky, S. W. Substrate binding and intersubunit interactions in l-asparaginase. J. Biol. Chem. 249, 1335–1340 (1974).
Article CAS PubMed Google Scholar
Tarentino, A. L. & Plummer, T. H. Jr. Enzymatic deglycosylation of asparagine-linked glycans: purification, properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum. Methods Enzymol. 230, 44–57 (1994).
Article CAS PubMed Google Scholar
Steenwyk, J. L. et al. A robust phylogenomic time tree for biotechnologically and medically important fungi in the Genera Aspergillus and Penicillium. mBio 10, e00925-19 (2019).
Article PubMed PubMed Central Google Scholar
Boucher, M. J. & Madhani, H. D. Convergent evolution of innate immune-modulating effectors in invasive fungal pathogens. Trends Microbiol. 32, 435–447 (2023).
Dang, E. V. et al. Secreted fungal virulence effector triggers allergic inflammation via TLR4. Nature 608, 161–167 (2022).
Article CAS PubMed PubMed Central Google Scholar
Arvio, M. & Mononen, I. Aspartylglycosaminuria: a review. Orphanet J. Rare Dis. 11, 162 (2016).
Article PubMed PubMed Central Google Scholar
Mononen, I. et al. Aspartylglycosaminuria: protein chemistry and molecular biology of the most common lysosomal storage disorder of glycoprotein degradation. FASEB J. 7, 1247–1256 (1993).
Article CAS PubMed Google Scholar
Mononen, I. & Aronson, N. N. (eds) Lysosomal Storage Disease: Aspartylglycosaminuria (Springer, 1997).
Goodspeed, K., Feng, C., Laine, M. & Lund, T. C. Aspartylglucosaminuria: clinical presentation and potential therapies. J. Child Neurol. 36, 403–414 (2021).
Shibayama, K. et al. Biochemical and pathophysiological characterization of Helicobacter pylori asparaginase. Microbiol. Immunol. 55, 408–417 (2011).
Article CAS PubMed Google Scholar
Washington, E. J., Banfield, M. J. & Dangl, J. L. What a difference a Dalton makes: bacterial virulence factors modulate eukaryotic host cell signaling systems via deamidation. Microbiol. Mol. Biol. Rev. 77, 527–539 (2013).
留言 (0)