Aspergillus fumigatus conidial surface-associated proteome reveals factors for fungal evasion and host immunity modulation

Earle, K. et al. Pathogenicity and virulence of Aspergillus fumigatus. Virulence 14, 2172264 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Rokas, A. et al. Evolving moldy murderers: Aspergillus section Fumigati as a model for studying the repeated evolution of fungal pathogenicity. PLoS Pathog. 16, e1008315 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bayry, J. et al. Surface structure characterization of Aspergillus fumigatus conidia mutated in the melanin synthesis pathway and their human cellular immune response. Infect. Immun. 82, 3141–3153 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Heinekamp, T. et al. Interference of Aspergillus fumigatus with the immune response. Semin. Immunopathol. 37, 141–152 (2015).

Article  CAS  PubMed  Google Scholar 

Blango, M. G. et al. Dynamic surface proteomes of allergenic fungal conidia. J. Proteome Res. 19, 2092–2104 (2020).

Article  CAS  PubMed  Google Scholar 

Aimanianda, V. et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460, 1117–1121 (2009).

Article  CAS  PubMed  Google Scholar 

Valsecchi, I. et al. Role of hydrophobins in Aspergillus fumigatus. J. Fungi 4, 2 (2017).

Article  Google Scholar 

Voltersen, V. et al. Proteome analysis reveals the conidial surface protein CcpA essential for virulence of the pathogenic fungus Aspergillus fumigatus. mBio 9, e01557-18 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Jia, L. J. et al. Aspergillus fumigatus hijacks human p11 to redirect fungal-containing phagosomes to non-degradative pathway. Cell Host Microbe 31, 373–388 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asif, A. R. et al. Proteome of conidial surface associated proteins of Aspergillus fumigatus reflecting potential vaccine candidates and allergens. J. Proteome Res. 5, 954–962 (2006).

Article  CAS  PubMed  Google Scholar 

Jia, L. J. et al. Biotinylated surfome profiling identifies potential biomarkers for diagnosis and therapy of Aspergillus fumigatus infection. mSphere 5, e00535-20 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Suh, M. J. et al. Development stage-specific proteomic profiling uncovers small, lineage specific proteins most abundant in the Aspergillus fumigatus conidial proteome. Prot. Sci. 10, 30 (2012).

Article  CAS  Google Scholar 

Venugopalan, L. P. et al. Comparative proteome analysis identifies species-specific signature proteins in Aspergillus pathogens. Appl. Microbiol. Biotechnol. 107, 4025–4040 (2023).

Article  CAS  PubMed  Google Scholar 

Yu, S. Y. et al. Clinical and microbiological characterization of invasive pulmonary aspergillosis caused by Aspergillus lentulus in China. Front. Microbiol. 11, 1672 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Houbraken, J., Weig, M. & Groβ, U. Aspergillus oerlinghausenensis, a new mould species closely related to A. fumigatus. FEMS Microbiol. Lett. 363, fnv236 (2016).

Article  PubMed  Google Scholar 

Steenwyk, J. L. et al. Variation among biosynthetic gene clusters, secondary metabolite profiles, and cards of virulence across Aspergillus species. Genetics 216, 481–497 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mead, M. E. et al. Characterizing the pathogenic, genomic, and chemical traits of Aspergillus fischeri, a close relative of the major human fungal pathogen Aspergillus fumigatus. mSphere 4, e00018-19 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Thywißen, A. et al. Conidial dihydroxynaphthalene melanin of the human pathogenic fungus Aspergillus fumigatus interferes with the host endocytosis pathway. Front. Microbiol. 2, 96 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Horta, M. A. C. et al. Examination of genome-wide ortholog variation in clinical and environmental isolates of the fungal pathogen Aspergillus fumigatus. mBio 13, e0151922 (2022).

Article  PubMed  Google Scholar 

Baltussen, T. J. H. et al. The C2H2 transcription factor SltA is required for germination and hyphal development in Aspergillus fumigatus. mSphere 1, e0007623 (2023).

Article  Google Scholar 

Zhao, C. et al. High-throughput gene replacement in Aspergillus fumigatus. Curr. Protoc. Microbiol. 54, e88 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mead, M. E. et al. An evolutionary genomic approach reveals both conserved and species-specific genetic elements related to human disease in closely related Aspergillus fungi. Genetics 218, iyab066 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Latgé, J. P. & Chamilos, G. Aspergillus fumigatus and aspergillosis in 2019. Clin. Microbiol. Rev. 33, e00140–18 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Shifrin, S., Parrott, C. L. & Luborsky, S. W. Substrate binding and intersubunit interactions in l-asparaginase. J. Biol. Chem. 249, 1335–1340 (1974).

Article  CAS  PubMed  Google Scholar 

Tarentino, A. L. & Plummer, T. H. Jr. Enzymatic deglycosylation of asparagine-linked glycans: purification, properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum. Methods Enzymol. 230, 44–57 (1994).

Article  CAS  PubMed  Google Scholar 

Steenwyk, J. L. et al. A robust phylogenomic time tree for biotechnologically and medically important fungi in the Genera Aspergillus and Penicillium. mBio 10, e00925-19 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Boucher, M. J. & Madhani, H. D. Convergent evolution of innate immune-modulating effectors in invasive fungal pathogens. Trends Microbiol. 32, 435–447 (2023).

Dang, E. V. et al. Secreted fungal virulence effector triggers allergic inflammation via TLR4. Nature 608, 161–167 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arvio, M. & Mononen, I. Aspartylglycosaminuria: a review. Orphanet J. Rare Dis. 11, 162 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Mononen, I. et al. Aspartylglycosaminuria: protein chemistry and molecular biology of the most common lysosomal storage disorder of glycoprotein degradation. FASEB J. 7, 1247–1256 (1993).

Article  CAS  PubMed  Google Scholar 

Mononen, I. & Aronson, N. N. (eds) Lysosomal Storage Disease: Aspartylglycosaminuria (Springer, 1997).

Goodspeed, K., Feng, C., Laine, M. & Lund, T. C. Aspartylglucosaminuria: clinical presentation and potential therapies. J. Child Neurol. 36, 403–414 (2021).

Article  PubMed  Google Scholar 

Shibayama, K. et al. Biochemical and pathophysiological characterization of Helicobacter pylori asparaginase. Microbiol. Immunol. 55, 408–417 (2011).

Article  CAS  PubMed  Google Scholar 

Washington, E. J., Banfield, M. J. & Dangl, J. L. What a difference a Dalton makes: bacterial virulence factors modulate eukaryotic host cell signaling systems via deamidation. Microbiol. Mol. Biol. Rev. 77, 527–539 (2013).

Article 

留言 (0)

沒有登入
gif