Fc-engineered antibodies promote neutrophil-dependent control of Mycobacterium tuberculosis

Global Tuberculosis Report (World Health Organization, 2023).

Caruso, A. M. et al. Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J. Immunol. 162, 5407–5416 (1999).

Article  CAS  PubMed  Google Scholar 

Lin, P. L. et al. CD4 T cell depletion exacerbates acute Mycobacterium tuberculosis while reactivation of latent infection is dependent on severity of tissue depletion in cynomolgus macaques. AIDS Res. Hum. Retroviruses 28, 1693–1702 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diedrich, C. R. et al. Reactivation of latent tuberculosis in cynomolgus macaques infected with SIV is associated with early peripheral T cell depletion and not virus load. PLoS ONE 5, e9611 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Maglione, P. J., Xu, J. & Chan, J. B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis. J. Immunol. 178, 7222–7234 (2007).

Article  CAS  PubMed  Google Scholar 

Hamasur, B. et al. A mycobacterial lipoarabinomannan specific monoclonal antibody and its F(ab’) fragment prolong survival of mice infected with Mycobacterium tuberculosis. Clin. Exp. Immunol. 138, 30–38 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teitelbaum, R. et al. A mAb recognizing a surface antigen of Mycobacterium tuberculosis enhances host survival. Proc. Natl Acad. Sci. USA 95, 15688–15693 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pethe, K. et al. The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature 412, 190–194 (2001).

Article  CAS  PubMed  Google Scholar 

Balu, S. et al. A novel human IgA monoclonal antibody protects against tuberculosis. J. Immunol. 186, 3113–3119 (2011).

Article  CAS  PubMed  Google Scholar 

Watson, A. et al. Human antibodies targeting a Mycobacterium transporter protein mediate protection against tuberculosis. Nat. Commun. 12, 602 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, H. et al. Latently and uninfected healthcare workers exposed to TB make protective antibodies against Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 114, 5023–5028 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, T. et al. Capsular glycan recognition provides antibody-mediated immunity against tuberculosis. J. Clin. Invest. 130, 1808–1822 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krishnananthasivam, S. et al. An anti-LpqH human monoclonal antibody from an asymptomatic individual mediates protection against Mycobacterium tuberculosis. npj Vaccines 8, 127 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, T. et al. Association of human antibodies to arabinomannan with enhanced mycobacterial opsonophagocytosis and intracellular growth reduction. J. Infect. Dis. 214, 300–310 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prados-Rosales, R. et al. Enhanced control of Mycobacterium tuberculosis extrapulmonary dissemination in mice by an arabinomannan–protein conjugate vaccine. PLoS Pathog. 13, e1006250 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Maglione, P. J., Xu, J., Casadevall, A. & Chan, J. Fc gamma receptors regulate immune activation and susceptibility during Mycobacterium tuberculosis infection. J. Immunol. 180, 3329–3338 (2008).

Article  CAS  PubMed  Google Scholar 

Lu, L. L. et al. A functional role for antibodies in tuberculosis. Cell 167, 433–443.e14 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sani, M. et al. Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog. 6, e1000794 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Lemassu, A. & Daffé, M. Structural features of the exocellular polysaccharides of Mycobacterium tuberculosis. Biochem. J. 297, 351–357 (1994).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ortalo-Magné, A. et al. Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology 141, 1609–1620 (1995).

Article  PubMed  Google Scholar 

Schwebach, J. R. et al. Glucan is a component of the Mycobacterium tuberculosis surface that is expressed in vitro and in vivo. Infect. Immun. 70, 2566–2575 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keitel, W. A. et al. Effects of infection and disease with Mycobacterium tuberculosis on serum antibody to glucan and arabinomannan: two surface polysaccharides of this pathogen. BMC Infect. Dis. 13, 276 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu, X. et al. Comparative evaluation of profiles of antibodies to mycobacterial capsular polysaccharides in tuberculosis patients and controls stratified by HIV status. Clin. Vaccine Immunol. 19, 198–208 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martin, C. J. et al. Efferocytosis is an innate antibacterial mechanism. Cell Host Microbe 12, 289–300 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andreu, N. et al. Optimisation of bioluminescent reporters for use with mycobacteria. PLoS ONE 5, e10777 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Gunn, B. M. et al. A Fc engineering approach to define functional humoral correlates of immunity against Ebola virus. Immunity 54, 815–828.e5 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith, P., DiLillo, D. J., Bournazos, S., Li, F. & Ravetch, J. V. Mouse model recapitulating human Fcγ receptor structural and functional diversity. Proc. Natl Acad. Sci. USA 109, 6181–6186 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shields, R. L. et al. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J. Biol. Chem. 276, 6591–6604 (2001).

Article  CAS  PubMed  Google Scholar 

Lazar, G. A. et al. Engineered antibody Fc variants with enhanced effector function. Proc. Natl Acad. Sci. USA 103, 4005–4010 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Idusogie, E. E. et al. Engineered antibodies with increased activity to recruit complement. J. Immunol. 166, 2571–2575 (2001).

留言 (0)

沒有登入
gif