Feys, S. et al. Lung epithelial and myeloid innate immunity in influenza-associated or COVID-19-associated pulmonary aspergillosis: an observational study. Lancet Respir. Med. 10, 1147–1159 (2022).
Article CAS PubMed Google Scholar
Fisher, M. C. et al. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 20, 557–571 (2022).
Article CAS PubMed PubMed Central Google Scholar
Lionakis, M. S., Drummond, R. A. & Hohl, T. M. Immune responses to human fungal pathogens and therapeutic prospects. Nat. Rev. Immunol. 23, 433–452 (2023).
Article CAS PubMed Google Scholar
WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action (World Health Organization, 2022).
Denning, D. W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 24, e428–e438 (2024).
Romani, L. Immunity to fungal infections. Nat. Rev. Immunol. 11, 275–288 (2011).
Article CAS PubMed Google Scholar
Casadevall, A. Immunity to invasive fungal diseases. Annu. Rev. Immunol. 40, 121–141 (2022).
Article CAS PubMed Google Scholar
Huizing, M., Helip-Wooley, A., Westbroek, W., Gunay-Aygun, M. & Gahl, W. A. Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annu. Rev. Genom. Hum. Genet. 9, 359–386 (2008).
Flannagan, R. S., Jaumouillé, V. & Grinstein, S. The cell biology of phagocytosis. Annu. Rev. Pathol. 7, 61–98 (2012).
Article CAS PubMed Google Scholar
Chandra, P., Grigsby, S. J. & Philips, J. A. Immune evasion and provocation by Mycobacterium tuberculosis. Nat. Rev. Microbiol. 20, 750–766 (2022).
Article CAS PubMed PubMed Central Google Scholar
Moldovan, A. & Fraunholz, M. J. In or out: phagosomal escape of Staphylococcus aureus. Cell. Microbiol. 21, e12997 (2019).
Jia, L.-J. et al. Aspergillus fumigatus hijacks human p11 to redirect fungal-containing phagosomes to non-degradative pathway. Cell Host Microbe 31, 373–388 (2023).
Article CAS PubMed PubMed Central Google Scholar
Erwig, L. P. & Gow, N. A. R. Interactions of fungal pathogens with phagocytes. Nat. Rev. Microbiol. 14, 163–176 (2016).
Article CAS PubMed Google Scholar
Lange, T., Kasper, L., Gresnigt, M. S., Brunke, S. & Hube, B. “Under pressure”—how fungi evade, exploit, and modulate cells of the innate immune system. Semin. Immunol. 66, 101738 (2023).
Article CAS PubMed PubMed Central Google Scholar
Tucker, S. C. & Casadevall, A. Replication of Cryptococcus neoformansin macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm. Proc. Natl Acad. Sci. USA 99, 3165–3170 (2002).
Article CAS PubMed PubMed Central Google Scholar
Shen, Q., Beucler, M. J., Ray, S. C. & Rappleye, C. A. Macrophage activation by IFN-γ triggers restriction of phagosomal copper from intracellular pathogens. PLoS Pathog. 14, e1007444 (2018).
Article PubMed PubMed Central Google Scholar
Gordon, S. Phagocytosis: an immunobiologic process. Immunity 44, 463–475 (2016).
Article CAS PubMed Google Scholar
Heinekamp, T. et al. Interference of Aspergillus fumigatus with the immune response. Semin. Immunopathol. 37, 141–152 (2015).
Article CAS PubMed Google Scholar
Uribe-Querol, E. & Rosales, C. Phagocytosis: our current understanding of a universal biological process. Front. Immunol. 11, 1066 (2020).
Article CAS PubMed PubMed Central Google Scholar
Brown, G. D. & Gordon, S. A new receptor for β-glucans. Nature 413, 36–37 (2001).
Article CAS PubMed Google Scholar
Goodridge, H. S. et al. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature 472, 471–475 (2011).
Article CAS PubMed PubMed Central Google Scholar
Yamasaki, S. et al. C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc. Natl Acad. Sci. USA 106, 1897–1902 (2009).
Article CAS PubMed PubMed Central Google Scholar
Zhu, L. L. et al. C-type lectin receptors Dectin-3 and Dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity 39, 324–334 (2013).
Article CAS PubMed Google Scholar
Vendele, I. et al. Mannan detecting C-type lectin receptor probes recognise immune epitopes with diverse chemical, spatial and phylogenetic heterogeneity in fungal cell walls. PLoS Pathog. 16, e1007927 (2020).
Article PubMed PubMed Central Google Scholar
Maxson, M. E. et al. Integrin-based diffusion barrier separates membrane domains enabling the formation of microbiostatic frustrated phagosomes. eLife 7, e34798 (2018).
Article PubMed PubMed Central Google Scholar
Bain, J. M. et al. Immune cells fold and damage fungal hyphae. Proc. Natl Acad. Sci. USA 118, e2020484118 (2021).
Article CAS PubMed PubMed Central Google Scholar
Fairn, G. D. & Grinstein, S. How nascent phagosomes mature to become phagolysosomes. Trends Immunol. 33, 397–405 (2012).
Article CAS PubMed Google Scholar
Okai, B., Lyall, N., Gow, N. A., Bain, J. M. & Erwig, L. P. Rab14 regulates maturation of macrophage phagosomes containing the fungal pathogen Candida albicans and outcome of the host–pathogen interaction. Infect. Immun. 83, 1523–1535 (2015).
Article CAS PubMed PubMed Central Google Scholar
Schmidt, H. et al. Proteomics of Aspergillus fumigatus conidia-containing phagolysosomes identifies processes governing immune evasion. Mol. Cell. Proteom. 17, 1084–1096 (2018).
Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005).
Article CAS PubMed Google Scholar
Takahashi, S. et al. Rab11 regulates exocytosis of recycling vesicles at the plasma membrane. J. Cell Sci. 125, 4049–4057 (2012).
Guichard, A., Nizet, V. & Bier, E. RAB11-mediated trafficking in host–pathogen interactions. Nat. Rev. Microbiol. 12, 624–634 (2014).
留言 (0)