Transcriptional function of E2A, Ebf1, Pax5, Ikaros and Aiolos analyzed by in vivo acute protein degradation in early B cell development

Wang, J.-H. et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5, 537–549 (1996).

Article  CAS  PubMed  Google Scholar 

Bain, G. et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79, 885–892 (1994).

Article  CAS  PubMed  Google Scholar 

Zhuang, Y., Soriano, P. & Weintraub, H. The helix-loop-helix gene E2A is required for B cell formation. Cell 79, 875–884 (1994).

Article  CAS  PubMed  Google Scholar 

Lin, H. & Grosschedl, R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376, 263–267 (1995).

Article  CAS  PubMed  Google Scholar 

Urbánek, P., Wang, Z.-Q., Fetka, I., Wagner, E. F. & Busslinger, M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79, 901–912 (1994).

Article  PubMed  Google Scholar 

Schwickert, T. A. et al. Stage-specific control of early B cell development by the transcription factor Ikaros. Nat. Immunol. 15, 283–293 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ng, S. Y.-M., Yoshida, T., Zhang, J. & Georgopoulos, K. Genome-wide lineage-specific transcriptional networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells. Immunity 30, 493–507 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoshida, T., Ng, S. Y.-M., Zúñiga-Pflücker, J. C. & Georgopoulos, K. Early hematopoietic lineage restrictions directed by Ikaros. Nat. Immunol. 7, 382–391 (2006).

Article  CAS  PubMed  Google Scholar 

Joshi, I. et al. Loss of Ikaros DNA-binding function confers integrin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia. Nat. Immunol. 15, 294–304 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu, Y. et al. Lineage-specific 3D genome organization is assembled at multiple scales by IKAROS. Cell 186, 5269–5289 (2023).

Article  CAS  PubMed  Google Scholar 

Wang, J. H. et al. Aiolos regulates B cell activation and maturation to effector state. Immunity 9, 543–553 (1998).

Article  CAS  PubMed  Google Scholar 

Kwon, K. et al. Instructive role of the transcription factor E2A in early B lymphopoiesis and germinal center B cell development. Immunity 28, 751–762 (2008).

Article  CAS  PubMed  Google Scholar 

Dias, S., Mansson, R., Gurbuxani, S., Sigvardsson, M. & Kee, B. L. E2A proteins promote development of lymphoid-primed multipotent progenitors. Immunity 29, 217–227 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vilagos, B. et al. Essential role of EBF1 in the generation and function of distinct mature B cell types. J. Exp. Med. 209, 775–792 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pongubala, J. M. R. et al. Transcription factor EBF restricts alternative lineage options and promotes B cell fate commitment independently of Pax5. Nat. Immunol. 9, 203–215 (2008).

Article  CAS  PubMed  Google Scholar 

Li, R. et al. Dynamic EBF1 occupancy directs sequential epigenetic and transcriptional events in B-cell programming. Genes Dev. 32, 96–111 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Györy, I. et al. Transcription factor Ebf1 regulates differentiation stage-specific signaling, proliferation, and survival of B cells. Genes Dev. 26, 668–682 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Treiber, T. et al. Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription-independent poising of chromatin. Immunity 32, 714–725 (2010).

Article  CAS  PubMed  Google Scholar 

Boller, S. et al. Pioneering activity of the C-terminal domain of EBF1 shapes the chromatin landscape for B cell programming. Immunity 44, 527–541 (2016).

Article  CAS  PubMed  Google Scholar 

Nutt, S. L., Heavey, B., Rolink, A. G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

Article  CAS  PubMed  Google Scholar 

Fuxa, M. & Busslinger, M. Reporter gene insertions reveal a strictly B lymphoid-specific expression pattern of Pax5 in support of its B cell identity function. J. Immunol. 178, 3031–3037 (2007).

Article  CAS  PubMed  Google Scholar 

Revilla-i-Domingo, R. et al. The B-cell identity factor Pax5 regulates distinct transcriptional programmes in early and late B lymphopoiesis. EMBO J. 31, 3130–3146 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6, 917–922 (2009).

Article  CAS  PubMed  Google Scholar 

Yesbolatova, A. et al. The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat. Commun. 11, 5701 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, H. et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154, 1370–1379 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baker, O. et al. RAC-tagging: recombineering and Cas9-assisted targeting for protein tagging and conditional analyses. Sci. Rep. 6, 25529 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gruenbacher, S., Jaritz, M., Hill, L., Schäfer, M. & Busslinger, M. Essential role of the Pax5 C-terminal domain in controlling B cell commitment and development. J. Exp. Med. 220, e20230260 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morgan, B. et al. Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. EMBO J. 16, 2004–2013 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meers, M. P., Bryson, T. D., Henikoff, J. G. & Henikoff, S. Improved CUT&RUN chromatin profiling tools. eLife 8, e46314 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

Article  CAS 

留言 (0)

沒有登入
gif