Finzi, D. et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 1295–1300 (1997).
Article CAS PubMed Google Scholar
Wong, J. K. et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278, 1291–1295 (1997).
Article CAS PubMed Google Scholar
Hamer, D. H. Can HIV be cured? Mechanisms of HIV persistence and strategies to combat it. Curr. HIV Res. 2, 99–111 (2004).
Article CAS PubMed Google Scholar
Appay, V., Douek, D. C. & Price, D. A. CD8+ T cell efficacy in vaccination and disease. Nat. Med. 14, 623–628 (2008).
Article CAS PubMed Google Scholar
Saez-Cirion, A., Pancino, G., Sinet, M., Venet, A. & Lambotte, O. HIV controllers: how do they tame the virus? Trends Immunol. 28, 532–540 (2007).
Article CAS PubMed Google Scholar
Betts, M. R. et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 107, 4781–4789 (2006).
Article CAS PubMed PubMed Central Google Scholar
Almeida, J. R. et al. Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and clonal turnover. J. Exp. Med. 204, 2473–2485 (2007).
Article CAS PubMed PubMed Central Google Scholar
Migueles, S. A. et al. Lytic granule loading of CD8+ T cells is required for HIV-infected cell elimination associated with immune control. Immunity 29, 1009–1021 (2008).
Article CAS PubMed PubMed Central Google Scholar
Saez-Cirion, A. et al. HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. Proc. Natl Acad. Sci. USA 104, 6776–6781 (2007).
Article CAS PubMed PubMed Central Google Scholar
Almeida, J. R. et al. Antigen sensitivity is a major determinant of CD8+ T-cell polyfunctionality and HIV-suppressive activity. Blood 113, 6351–6360 (2009).
Article CAS PubMed PubMed Central Google Scholar
Hersperger, A. R. et al. Perforin expression directly ex vivo by HIV-specific CD8 T-cells is a correlate of HIV elite control. PLoS Pathog. 6, e1000917 (2010).
Article PubMed PubMed Central Google Scholar
Duvall, M. G. et al. Polyfunctional T cell responses are a hallmark of HIV-2 infection. Eur. J. Immunol. 38, 350–363 (2008).
Article CAS PubMed PubMed Central Google Scholar
Leligdowicz, A. et al. Highly avid, oligoclonal, early-differentiated antigen-specific CD8+ T cells in chronic HIV-2 infection. Eur. J. Immunol. 40, 1963–1972 (2010).
Article CAS PubMed Google Scholar
Angin, M. et al. Preservation of lymphopoietic potential and virus suppressive capacity by CD8+ T cells in HIV-2-infected controllers. J. Immunol. 197, 2787–2795 (2016).
Article CAS PubMed Google Scholar
Day, C. L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350–354 (2006).
Article CAS PubMed Google Scholar
Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).
Article CAS PubMed Google Scholar
Buggert, M. et al. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+ T cells in HIV infection. PLoS Pathog. 10, e1004251 (2014).
Article PubMed PubMed Central Google Scholar
Papagno, L. et al. Immune activation and CD8+ T-cell differentiation towards senescence in HIV-1 infection. PLoS Biol. 2, E20 (2004).
Article PubMed PubMed Central Google Scholar
Appay, V. & Sauce, D. Assessing immune aging in HIV-infected patients. Virulence 8, 529–538 (2017).
Article CAS PubMed Google Scholar
Oxenius, A. et al. Early highly active antiretroviral therapy for acute HIV-1 infection preserves immune function of CD8+ and CD4+ T lymphocytes. Proc. Natl Acad. Sci. USA 97, 3382–3387 (2000).
Article CAS PubMed PubMed Central Google Scholar
Takata, H. et al. Long-term antiretroviral therapy initiated in acute HIV infection prevents residual dysfunction of HIV-specific CD8+ T cells. EBioMedicine 84, 104253 (2022).
Article CAS PubMed PubMed Central Google Scholar
Chouquet, C. et al. Correlation between breadth of memory HIV-specific cytotoxic T cells, viral load and disease progression in HIV infection. AIDS 16, 2399–2407 (2002).
Article CAS PubMed Google Scholar
Haas, G. et al. Cytotoxic T-cell responses to HIV-1 reverse transcriptase, integrase and protease. AIDS 12, 1427–1436 (1998).
Article CAS PubMed Google Scholar
Kousignian, I. et al. Markov modelling of changes in HIV-specific cytotoxic T-lymphocyte responses with time in untreated HIV-1 infected patients. Stat. Med. 22, 1675–1690 (2003).
Article CAS PubMed Google Scholar
Fali, T. et al. New insights into lymphocyte differentiation and aging from telomere length and telomerase activity measurements. J. Immunol. 202, 1962–1969 (2019).
Article CAS PubMed Google Scholar
Nguyen, S. et al. Elite control of HIV is associated with distinct functional and transcriptional signatures in lymphoid tissue CD8+ T cells. Sci. Transl. Med. 11, eaax4077 (2019).
Article CAS PubMed PubMed Central Google Scholar
Quigley, M. et al. Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nat. Med. 16, 1147–1151 (2010).
Article CAS PubMed PubMed Central Google Scholar
Migueles, S. A. et al. HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat. Immunol. 3, 1061–1068 (2002).
Article CAS PubMed Google Scholar
Migueles, S. A. et al. Antigenic restimulation of virus-specific memory CD8+ T cells requires days of lytic protein accumulation for maximal cytotoxic capacity. J. Virol. 94, e10595-20 (2020).
Deng, K. et al. Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature 517, 381–385 (2015).
Article CAS PubMed PubMed Central Google Scholar
Bozorgmehr, N. et al. Expa
留言 (0)