Shen Y, Huang X, Wu J, Lin X, Zhou X, Zhu Z, Pan X, Xu J, Qiao J, Zhang T, Ye L, Jiang H, Ren Y, Shan PF (2022) The global burden of osteoporosis, low bone mass, and its related fracture in 204 countries and territories, 1990–2019. Front Endocrinol 13:882241. https://doi.org/10.3389/fendo.2022.882241
LeBoff MS, Greenspan SL, Insogna KL, Lewiecki EM, Saag KG, Singer AJ, Siris ES (2022) The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 33:2049–2102. https://doi.org/10.1007/S00198-021-05900-Y
Article CAS PubMed PubMed Central Google Scholar
Milsom S, Leung W, Twigden V, Mitchell P, Nowitz M, Cornish J (2013) Does insufficient access to dual-energy X-ray absorptiometry (DXA) stifle the provision of quality osteoporosis care in New Zealand? Arch Osteoporos. https://doi.org/10.1007/S11657-013-0120-9
Yamamoto N, Sukegawa S, Kitamura A, Goto R, Noda T, Nakano K, Takabatake K, Kawai H, Nagatsuka H, Kawasaki K, Furuki Y, Ozaki T (2020) Deep learning for osteoporosis classification using hip radiographs and patient clinical covariates. Biomolecules 10:1–13. https://doi.org/10.3390/BIOM10111534
Gao L, Jiao T, Feng Q, Wang W (2021) Application of artificial intelligence in diagnosis of osteoporosis using medical images: a systematic review and meta-analysis. Osteoporos Int 32:1279–1286. https://doi.org/10.1007/S00198-021-05887-6
Article CAS PubMed Google Scholar
Sukegawa S, Fujimura A, Taguchi A, Yamamoto N, Kitamura A, Goto R, Nakano K, Takabatake K, Kawai H, Nagatsuka H, Furuki Y (2022) Identification of osteoporosis using ensemble deep learning model with panoramic radiographs and clinical covariates. Sci Rep 12:6088. https://doi.org/10.1038/S41598-022-10150-X
Article CAS PubMed PubMed Central Google Scholar
Rahim F, ZakiZadeh A, Javanmardi P, Emmanuel Komolafe T, Khalafi M, Arjomandi A, Ghofrani HA, Shirbandi K (2023) Machine learning algorithms for diagnosis of hip bone osteoporosis: a systematic review and meta-analysis study. Biomed Eng Online 22:68. https://doi.org/10.1186/S12938-023-01132-9
Article PubMed PubMed Central Google Scholar
Yen TY, Ho CS, Chen YP, Pei YC (2024) Diagnostic accuracy of deep learning for the prediction of osteoporosis using plain X-rays: a systematic review and meta-analysis. Diagnostics. https://doi.org/10.3390/DIAGNOSTICS14020207
Article PubMed PubMed Central Google Scholar
Ong W, Liu RW, Makmur A, Low XZ, Sng WJ, Tan JH, Kumar N, Hallinan JTPD (2023) Artificial intelligence applications for osteoporosis classification using computed tomography. Bioengineering. https://doi.org/10.3390/BIOENGINEERING10121364
Article PubMed PubMed Central Google Scholar
Sebro R, De la Garza-Ramos C (2022) Machine learning for the prediction of osteopenia/osteoporosis using the CT attenuation of multiple osseous sites from chest CT. Eur J Radiol 155:110474. https://doi.org/10.1016/J.EJRAD.2022.110474
Sato Y, Yamamoto N, Inagaki N, Iesaki Y, Asamoto T, Suzuki T, Takahara S (2022) Deep learning for bone mineral density and T-score prediction from chest X-rays: a multicenter study. Biomedicines. https://doi.org/10.3390/BIOMEDICINES10092323
Article PubMed PubMed Central Google Scholar
Bossuyt PM, Irwig L, Craig J, Glasziou P (2006) Comparative accuracy: assessing new tests against existing diagnostic pathways. BMJ 332:1089–1092. https://doi.org/10.1136/BMJ.332.7549.1089
Article PubMed PubMed Central Google Scholar
Cochrane handbook for systematic reviews of diagnostic test accuracy | Cochrane training. https://training.cochrane.org/handbook-diagnostic-test-accuracy/PDF/v2. Accessed Mar 15, 2024
Salameh JP, Bossuyt PM, McGrath TA, Thombs BD, Hyde CJ et al (2020) Preferred reporting items for systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA): explanation, elaboration, and checklist. BMJ 370:m2632. https://doi.org/10.1136/BMJ.M2632
Dimai HP (2017) Use of dual-energy X-ray absorptiometry (DXA) for diagnosis and fracture risk assessment; WHO-criteria, T- and Z-score, and reference databases. Bone 104:39–43. https://doi.org/10.1016/J.BONE.2016.12.016
Soen S, Fukunaga M, Sugimoto T, Sone T, Fujiwara S, Endo N, Gorai I, Shiraki M, Hagino H, Hosoi T, Ohta H, Yoneda T, Tomomitsu T (2013) Diagnostic criteria for primary osteoporosis: year 2012 revision. J Bone Miner Metab 31:247–257. https://doi.org/10.1007/S00774-013-0447-8
Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009
Sounderajah V, Ashrafian H, Rose S, Shah NH, Ghassemi M et al (2021) A quality assessment tool for artificial intelligence-centered diagnostic test accuracy studies: QUADAS-AI. Nat Med 27:1663–1665. https://doi.org/10.1038/S41591-021-01517-0
Article CAS PubMed Google Scholar
Dahabreh IJ, Trikalinos TA, Lau J, Schmid C (2012) An empirical assessment of bivariate methods for meta-analysis of test accuracy. https://www.ncbi.nlm.nih.gov/books/NBK115736/. Accessed Nov 30, 2023.
Swift A, Heale R, Twycross A (2020) What are sensitivity and specificity? Evid Based Nurs 23:2–4. https://doi.org/10.1136/ebnurs-2019-103225
Salari N, Ghasemi H, Mohammadi L, Behzadi MH, Rabieenia E, Shohaimi S, Mohammadi M (2021) The global prevalence of osteoporosis in the world: a comprehensive systematic review and meta-analysis. J Orthop Surg Res. https://doi.org/10.1186/S13018-021-02772-0
Article PubMed PubMed Central Google Scholar
Freeman SC, Kerby CR, Patel A, Cooper NJ, Quinn T, Sutton AJ (2019) Development of an interactive web-based tool to conduct and interrogate meta-analysis of diagnostic test accuracy studies: MetaDTA. BMC Med Res Methodol 19:81. https://doi.org/10.1186/S12874-019-0724-X
Article PubMed PubMed Central Google Scholar
Banno M, Tsujimoto Y, Luo Y, Miyakoshi C, Kataoka Y, CAST-HSROC (2021) CAST-HSROC: a web application for calculating the summary points of diagnostic test accuracy from the hierarchical summary receiver operating characteristic model. Cureus 13:e13257. https://doi.org/10.7759/CUREUS.13257
Article PubMed PubMed Central Google Scholar
Balshem H, Helfand M, Schünemann HJ, Oxman AD, Kunz R, Brozek J, Vist GE, Falck-Ytter Y, Meerpohl J, Norris S (2011) GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 64:401–406. https://doi.org/10.1016/J.JCLINEPI.2010.07.015
Ohta Y (2020) Development of a fast screening method for osteoporosis using chest X-ray images and machine learning. Can J Biomed Res Tech 3:5
Breit HC, Varga-Szemes A, Schoepf UJ, Emrich T, Aldinger J, Kressig RW, Beerli N, Andreas Buser T, Breil D, Derani I, Bridenbaugh S, Gill C, Fischer AM (2023) CNN-based evaluation of bone density improves diagnostic performance to detect osteopenia and osteoporosis in patients with non-contrast chest CT examinations. Eur J Radiol 161:110728. https://doi.org/10.1016/J.EJRAD.2023.110728
Chen YC, Li YT, Kuo PC, Cheng SJ, Chung YH, Kuo DP, Chen CY (2023) Automatic segmentation and radiomic texture analysis for osteoporosis screening using chest low-dose computed tomography. Eur Radiol 33:5097–5106. https://doi.org/10.1007/S00330-023-09421-6
Bilbily A, Syme CA, Adachi JD, Berger C, Morin SN, Goltzman D, Cicero MD (2023) Opportunistic screening of low bone mineral density from standard X-rays. J Am Coll Radiol. https://doi.org/10.1016/J.JACR.2023.07.024
Tsai DJ, Lin C, Lin CS, Lee CC, Wang CH, Fang WH (2024) Artificial intelligence-enabled chest X-ray classifies osteoporosis and identifies mortality risk. J Med Syst 48:12. https://doi.org/10.1007/S10916-023-02030-2
Jang M, Kim M, Bae SJ, Lee SH, Koh JM, Kim N (2022) Opportunistic osteoporosis screening using chest radiographs with deep learning: development and external validation with a cohort dataset. J Bone Miner Res 37:369–377. https://doi.org/10.1002/JBMR.4477
留言 (0)