Eigen, M. Proton transfer, acid–base catalysis, and enzymatic hydrolysis. Part I: elementary processes. Angew. Chem. Int. Ed. Engl. 3, 1–19 (1964).
Zundel, G. & Metzger, H. Energiebänder der tunnelnden Überschuß-Protonen in flüssigen Säuren. Eine IR-spektroskopische Untersuchung der Natur der Gruppierungen H5O2+. Z. Phys. Chem. 58, 225–245 (1968).
Zundel, G. Hydrogen bonds with large proton polarizability and proton transfer processes in electrochemistry and biology. Adv. Chem. Phys. 111, 1–217 (1999).
Tuckerman, M., Laasonen, K., Sprik, M. & Parrinello, M. Ab initio molecular dynamics simulation of the solvation and transport of H3O+ and OH− ions in water. J. Phys. Chem. 99, 5749–5752 (1995).
Vuilleumier, R. & Borgis, D. An extended empirical valence bond model for describing proton mobility in water. Isr. J. Chem. 39, 457–467 (1999).
Marx, D., Tuckerman, M. E., Hutter, J. & Parrinello, M. The nature of the hydrated excess proton in water. Nature 397, 601–604 (1999).
Marx, D. Proton transfer 200 years after von Grotthuss: insights from ab initio simulations. ChemPhysChem 7, 1848–1870 (2006).
Article CAS PubMed Google Scholar
Markovitch, O. et al. Special pair dance and partner selection: elementary steps in proton transport in liquid water. J. Phys. Chem. B 112, 9456–9466 (2008).
Article CAS PubMed Google Scholar
Berkelbach, T. C. & Tuckerman, M. E. Concerted hydrogen-bond dynamics in the transport mechanism of the hydrated proton: a first-principles molecular dynamics study. Phys. Rev. Lett. 103, 238302 (2009).
Hassanali, A., Giberti, F., Cuny, J., Kühne, T. D. & Parrinello, M. Proton transfer through the water gossamer. Proc. Natl Acad. Sci. USA 110, 13723–13728 (2013).
Article CAS PubMed PubMed Central Google Scholar
Napoli, J. A., Marsalek, O. & Markland, T. E. Decoding the spectroscopic features and time scales of aqueous proton defects. J. Chem. Phys. 148, 222833 (2018).
Roy, S. et al. Resolving heterogeneous dynamics of excess protons in aqueous solution with rate theory. J. Phys. Chem. B 124, 5665–5675 (2020).
Article CAS PubMed Google Scholar
Lapid, H., Agmon, N., Petersen, M. K. & Voth, G. A. A bond-order analysis of the mechanism for hydrated proton mobility in liquid water. J. Chem. Phys. 122, 14506 (2005).
Thämer, M., De Marco, L., Ramasesha, K., Mandal, A. & Tokmakoff, A. Ultrafast 2D IR spectroscopy of the excess proton in liquid water. Science 350, 78–82 (2015).
Dahms, F., Fingerhut, B. P., Nibbering, E. T. J., Pines, E. & Elsaesser, T. Large-amplitude transfer motion of hydrated excess protons mapped by ultrafast 2D IR spectroscopy. Science 357, 491–495 (2017).
Article CAS PubMed Google Scholar
Fournier, J. A., Carpenter, W. B., Lewis, N. H. C. & Tokmakoff, A. Broadband 2D IR spectroscopy reveals dominant asymmetric H5O2+ proton hydration structures in acid solutions. Nat. Chem. 10, 932–937 (2018).
Article CAS PubMed Google Scholar
Kundu, A. et al. Hydrated excess protons in acetonitrile/water mixtures: solvation species and ultrafast proton motions. J. Phys. Chem. Lett. 10, 2287–2294 (2019).
Article CAS PubMed Google Scholar
Luz, Z. & Meiboom, S. The activation energies of proton transfer reactions in water. J. Am. Chem. Soc. 86, 4768–4769 (1964).
Ando, K. & Hynes, J. T. HCl acid ionization in water: a theoretical molecular modeling. J. Mol. Liq. 64, 25–37 (1995).
Tuckerman, M. E., Marx, D., Klein, M. L. & Parrinello, M. On the quantum nature of the shared proton in hydrogen bonds. Science 275, 817–820 (1997).
Article CAS PubMed Google Scholar
Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).
Rossi, M., Ceriotti, M. & Manolopoulos, D. E. How to remove the spurious resonances from ring polymer molecular dynamics. J. Chem. Phys. 140, 234116 (2014).
Sluyters, J. H. & Sluyters-Rehbach, M. Rotation of water molecules and its relation with the chemistry and physics of liquid water. J. Phys. Chem. B 114, 863–869 (2010).
Article CAS PubMed Google Scholar
Fournier, J. A. et al. Vibrational spectral signature of the proton defect in the three-dimensional H+(H2O)21 cluster. Science 344, 1009–1012 (2014).
Article CAS PubMed Google Scholar
Calio, P. B., Li, C. & Voth, G. A. Resolving the structural debate for the hydrated excess proton in water. J. Am. Chem. Soc. 143, 18672–18683 (2021).
Article CAS PubMed Google Scholar
Woutersen, S. & Bakker, H. J. Ultrafast vibrational and structural dynamics of the proton in liquid water. Phys. Rev. Lett. 96, 138305 (2006).
Meiboom, S. Nuclear magnetic resonance study of the proton transfer in water. J. Chem. Phys. 34, 375 (1961).
Yuan, R. et al. Tracking aqueous proton transfer by two-dimensional infrared spectroscopy and ab initio molecular dynamics simulations. ACS Cent. Sci. 5, 1269–1277 (2019).
Article CAS PubMed PubMed Central Google Scholar
Calio, P. B., Li, C. & Voth, G. A. Molecular origins of the barriers to proton transport in acidic aqueous solutions. J. Phys. Chem. B 124, 8868–8876 (2020).
Article CAS PubMed Google Scholar
Tse, Y.-L. S., Knight, C. & Voth, G. A. An analysis of hydrated proton diffusion in ab initio molecular dynamics. J. Chem. Phys. 142, 014104 (2015).
Chen, M. et al. Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer. Nat. Chem. 10, 413–419 (2018).
Hammes-Schiffer, S. & Billeter, S. R. Hybrid approach for the dynamical simulation of proton and hydride transfer in solution and proteins. Int. Rev. Phys. Chem. 20, 591–616 (2001).
Daly, C. A. et al. Decomposition of the experimental Raman and infrared spectra of acidic water into proton, special pair, and counterion contributions. J. Phys. Chem. Lett. 8, 5246–5252 (2017).
Article CAS PubMed Google Scholar
Decornez, H., Drukker, K. & Hammes-Schiffer, S. Solvation and hydrogen-bonding effects on proton wires. J. Phys. Chem. A 103, 2891–2898 (1999).
Eaves, J. D. et al. Hydrogen bonds in liquid water are broken only fleetingly. Proc. Natl Acad. Sci. USA 102, 13019–13022 (2005).
留言 (0)