Identification of microbe–disease signed associations via multi-scale variational graph autoencoder based on signed message propagation

Cénit M, Matzaraki V, Tigchelaar E, Zhernakova A. Rapidly expanding knowledge on the role of the gut microbiome in health and disease. Biochimica et Biophysica Acta -Molecular Basis of Disease. 2014;1842(10):1981–92.

Article  Google Scholar 

Sommer F, Bäckhed F. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol. 2013;11(4):227–38.

Article  CAS  PubMed  Google Scholar 

Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14.

Article  Google Scholar 

Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312(5778):1355–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cross ML. Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. FEMS Immunol Med Microbiol. 2002;34(4):245–53.

Article  CAS  PubMed  Google Scholar 

Henao-Mejia J, Elinav E, Thaiss CA, Licona-Limon P, Flavell RA. Role of the intestinal microbiome in liver disease. J Autoimmun. 2013;46:66–73.

Article  CAS  PubMed  Google Scholar 

Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, Hu C, Wong FS, Szot GL, Bluestone JA. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nat Methods. 2008;455(7216):1109–13.

CAS  Google Scholar 

Huang YJ, Boushey HA. The microbiome in asthma. J Allergy Clin Immunol. 2015;135(1):25–30.

Article  PubMed  PubMed Central  Google Scholar 

Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13(11):800–12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng J, Wu S, Yang H, Ai C, Qiao J, Xu J, Guo F. Microbe-bridged disease-metabolite associations identification by heterogeneous graph fusion. Brief Bioinform. 2022;23(6):bbac423.

Article  PubMed  Google Scholar 

Wang L, Yang X, Kuang L, Zhang Z, Zeng B, Chen Z. Graph convolutional neural network with multi-layer attention mechanism for predicting potential microbe-disease associations. Curr Bioinform. 2023;18(6):497–508.

Article  CAS  Google Scholar 

Wang L, Li H, Wang Y, Tan Y, Chen Z, Pei T, Zou Q. MDADP: a webserver integrating database and prediction tools for microbe-disease associations. IEEE J Biomed Health Inform. 2022;26(7):3427–34.

Article  PubMed  Google Scholar 

McCoubrey LE, Gaisford S, Orlu M, Basit AW. Predicting drug-microbiome interactions with machine learning. Biotechnol Adv. 2022;54: 107797.

Article  CAS  PubMed  Google Scholar 

Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature. 2019;570(7762):462–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Panebianco C, Andriulli A, Pazienza V. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. Microbiome. 2018;6:1–13.

Article  Google Scholar 

Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, Brochado AR, Fernandez KC, Dose H, Mori H. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555(7698):623–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang R, Jiang Y, Jin J, Yin C, Yu H, Wang F, Feng J, Su R, Nakai K, Zou Q. DeepBIO: an automated and interpretable deep-learning platform for high-throughput biological sequence prediction, functional annotation and visualization analysis. Nucleic Acids Res. 2023;51(7):3017–29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang L, Tan Y, Yang X, Kuang L, Ping P. Review on predicting pairwise relationships between human microbes, drugs and diseases: from biological data to computational models. Brief Bioinform. 2022;23(3):bbac080.

Article  PubMed  Google Scholar 

Wen Z, Yan C, Duan G, Li S, Wu F-X, Wang J. A survey on predicting microbe-disease associations: biological data and computational methods. Brief Bioinform. 2021;22(3):bbaa157.

Article  PubMed  Google Scholar 

Grover, Aditya, and Jure Leskovec. node2vec: Scalable Feature Learning for Networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol. 2016. 2016. p. 855–64.

Lei X, Wang Y. Predicting microbe-disease association by learning graph representations and rule-based inference on the heterogeneous network. Front Microbiol. 2020;11:579.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng L, Shen L, Liao L, Liu G, Zhou L. RNMFMDA: a microbe-disease association identification method based on reliable negative sample selection and logistic matrix factorization with neighborhood regularization. Front Microbiol. 2020;11:592430.

Article  PubMed  PubMed Central  Google Scholar 

Xu D, Xu H, Zhang Y, Wang M, Chen W, Gao R. MDAKRLS: Predicting human microbe-disease association based on Kronecker regularized least squares and similarities. J Transl Med. 2021;19:1–12.

Article  CAS  Google Scholar 

Long Y, Luo J, Zhang Y, Xia Y. Predicting human microbe–disease associations via graph attention networks with inductive matrix completion. Brief Bioinform. 2021;22(3):bbaa146.

Article  PubMed  Google Scholar 

Tao W, Liu Y, Lin X, Song B. Zeng XJBiB: prediction of multi-relational drug–gene interaction via dynamic hypergraph contrastive learning. Brief Bioinform. 2023;24(6):371.

Article  Google Scholar 

Wei L, Zhou C, Chen H, Song J, Su R. ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides. Bioinformatics. 2018;34(23):4007–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Derr T, Ma Y, Tang J: Signed graph convolutional networks. In: 2018 IEEE International Conference on Data Mining (ICDM): 2018. IEEE: 929–934.

Huang J, Shen H, Hou L, Cheng X. Signed graph attention networks. In: Artificial Neural Networks and Machine Learning–ICANN 2019: Workshop and Special Sessions: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings 28. Berlin, Heidelberg: Springer-Verlag; 2019. p. 566–77.

Li Y, Tian Y, Zhang J, Chang Y. Learning signed network embedding via graph attention. In: Proceedings of the AAAI conference on artificial intelligence, vol. 34. 2020. p. 4772–9.

Li Y, Qu M, Tang J, Chang Y. Signed laplacian graph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37. 2023. p. 4444–52.

Zeng X, Wang F, Luo Y, Kang S-G, Tang J, Lightstone FC, Fang EF, Cornell W, Nussinov R, Cheng F. Deep generative molecular design reshapes drug discovery. Cell Rep Med. 2022;4:100794.

Article  Google Scholar 

Zhu H, Hao H, Yu L. Identifying disease-related microbes based on multi-scale variational graph autoencoder embedding Wasserstein distance. BMC Biol. 2023;21(1):294.

Article  PubMed  PubMed Central  Google Scholar 

Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, Haibe-Kains B, Goldenberg A. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods. 2014;11(3):333–7.

Article  CAS  PubMed  Google Scholar 

Chen T, Guestrin C. Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, vol. 2016. 2016. p. 785–94.

Zulfiqar H, Guo Z, Ahmad RM, Ahmed Z, Cai P, Chen X, Zhang Y, Lin H, Shi Z. Deep-STP: a deep learning-based approach to predict snake toxin proteins by using word embeddings. Front Med. 2024;10:1291352.

Article  Google Scholar 

Zou X, Ren L, Cai P, Zhang Y, Ding H, Deng K, Yu X, Lin H, Huang C. Accurately identifying hemagglutinin using sequence information and machine learning methods. Front Med (Lausanne). 2023;10:1281880.

Article  PubMed  Google Scholar 

Kim M-J, Lee Y-C, Kim S-W. TrustSGCN: learning trustworthiness on edge signs for effective signed graph convolutional networks. In: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, vol. 2023. 2023. p. 2451–5.

Liu Y, Zheng Y, Zhang D, Lee VC, Pan S. Beyond smoothing: unsupervised graph representation learning with edge heterophily discriminating. In: Proceedings of the AAAI conference on artificial intelligence, vol. 37. 2023. p. 4516–44.

Van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9(11):2579.

Google Scholar 

Mancuso C, Santangelo R. Alzheimer’s disease and gut microbiota modifications: the long way between preclinical studies and clinical evidence. Pharmacol Res. 2018;129:329–36.

Article  CAS 

留言 (0)

沒有登入
gif