Virulence of banana wilt-causing fungal pathogen Fusarium oxysporum tropical race 4 is mediated by nitric oxide biosynthesis and accessory genes

StokstadJul, E. Devastating banana disease may have reached Latin America, could drive up global prices. Science https://doi.org/10.1126/science.aay7681 (2019).

Stover, R. H. Fusarial Wilt (Panama Disease) of Bananas and Other Musa Species (Commonwealth Mycological Institute, 1962).

Buddenhagen, I. Understanding strain diversity in Fusarium oxysporum f. sp. cubense and history of introduction of ‘tropical race 4’ to better manage banana production. In III International Symposium on Banana: ISHS-ProMusa Symposium on Recent Advances in Banana Crop Protection for Sustainable Production and Improved Livelihoods (eds Jones, D. & Van den Bergh I.) 193–204 (White River, 2009).

Viljoen, A., Ma, L.-J. & Molina, A. B. in Emerging Plant Diseases and Global Food Security (eds Ristaino, J. B. & Records, A.) 159–184 (The American Phytopathological Society, 2020).

Maymon, M., Sela, N., Shpatz, U., Galpaz, N. & Freeman, S. The origin and current situation of Fusarium oxysporum f. sp. cubense tropical race 4 in Israel and the Middle East. Sci. Rep. 10, 1590 (2020).

Maymon, M. et al. First report of Fusarium oxysporum f. sp. cubense tropical race 4 causing Fusarium wilt of Cavendish bananas in Israel. Plant Dis. 102, 2655 (2018).

Article  Google Scholar 

García-Bastidas, F. et al. First report of Fusarium wilt tropical race 4 in Cavendish bananas caused by Fusarium odoratissimum in Colombia. Plant Dis. 104, 994–994 (2020).

Article  Google Scholar 

Acuña, R. et al. First report of Fusarium oxysporum f. sp. cubense tropical race 4, causing Fusarium wilt in Cavendish bananas in Peru. Plant Dis. https://doi.org/10.1094/pdis-09-21-1951-pdn (2021).

Ma, L.-J. et al. Fusarium pathogenomics. Annu. Rev. Microbiol. 67, 399–416 (2013).

Article  CAS  PubMed  Google Scholar 

Dean, R. et al. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13, 414–430 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Ma, L.-J. et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464, 367–373 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, H., Yu, H. & Ma, L.-J. Accessory chromosomes in Fusarium oxysporum. Phytopathology 110, 1488–1496 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Y. & Ma, L. J. Deciphering pathogenicity of Fusarium oxysporum from a phylogenomics perspective. Adv. Genet. 100, 179–209 (2017).

Article  CAS  PubMed  Google Scholar 

Does, H. & Rep, M. in Plant Fungal Pathogens (eds Bolton, M. & Thomma, B.) 427–437 (Humana Press, 2012).

van Dam, P. et al. Effector profiles distinguish formae speciales of Fusarium oxysporum. Environ. Microbiol. 18, 4087–4102 (2016).

Article  PubMed  Google Scholar 

Ploetz, R. C. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology 96, 653–656 (2006).

Article  PubMed  Google Scholar 

Ploetz, R. C. Management of Fusarium wilt of banana: a review with special reference to tropical race 4. Crop Prot. 73, 7–15 (2015).

Article  CAS  Google Scholar 

Bentley, S., Pegg, K., Moore, N., Davis, R. & Buddenhagen, I. Genetic variation among vegetative compatibility groups of Fusarium oxysporum f. sp. cubense analyzed by DNA fingerprinting. Phytopathology 88, 1283–1293 (1998).

Article  CAS  PubMed  Google Scholar 

Katan, T. & Primo, P. D. Current status of vegetative compatibility groups in Fusarium oxysporum: supplement (1999). Phytoparasitica 27, 273–277 (1999).

Article  Google Scholar 

Moore, N., Pegg, K., Allen, R. & Irwin, J. Vegetative compatibility and distribution of Fusarium oxysporum f. sp. cubense in Australia. Aust. J. Exp. Agric. 33, 797–802 (1993).

Article  Google Scholar 

Fourie, G., Steenkamp, E., Gordon, T. & Viljoen, A. Evolutionary relationships among the Fusarium oxysporum f. sp. cubense vegetative compatibility groups. Appl. Environ. Microbiol. 75, 4770–4781 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Warmington, R. J. et al. High-quality draft genome sequence of the causal agent of the current Panama disease epidemic. Microbiol. Resour. Announc. 8, e00904-19 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Yun, Y. et al. Genome data of Fusarium oxysporum f. sp. cubense race 1 and tropical race 4 isolates using long-read sequencing. Mol. Plant Microbe Interact. 32, 1270–1272 (2019).

Article  CAS  PubMed  Google Scholar 

Leiva, A. M. et al. Draft genome sequence of Fusarium oxysporum f. sp. cubense tropical race 4 from Peru, obtained by nanopore and illumina hybrid assembly. Microbiol. Resour. Announc. 11, e00347-22 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Zheng, S.-J. et al. New geographical insights of the latest expansion of Fusarium oxysporum f. sp. cubense tropical race 4 into the greater Mekong subregion. Front. Plant Sci. 9, 457 (2018).

Article  PubMed  PubMed Central  Google Scholar 

O’Donnell, K., Kistler, H. C., Cigelnik, E. & Ploetz, R. C. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl Acad. Sci. USA 95, 2044–2049 (1998).

Article  PubMed  PubMed Central  Google Scholar 

Chellapan, B. V., van Dam, P., Rep, M., Cornelissen, B. J. & Fokkens, L. Non-canonical Helitrons in Fusarium oxysporum. Mob. DNA 7, 27 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Marcos, A. T. et al. Nitric oxide synthesis by nitrate reductase is regulated during development in A. spergillus. Mol. Microbiol. 99, 15–33 (2016).

Article  CAS  PubMed  Google Scholar 

Brodhun, F. et al. An iron 13 S-lipoxygenase with an α-linolenic acid specific hydroperoxidase activity from Fusarium oxysporum. PLoS ONE 8, e64919 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thatcher, L. F., Manners, J. M. & Kazan, K. Fusarium oxysporum hijacks COI1‐mediated jasmonate signaling to promote disease development in Arabidopsis. Plant J. 58, 927–939 (2009).

Article  CAS  PubMed  Google Scholar 

Guo, L. et al. Metatranscriptomic comparison of endophytic and pathogenic Fusarium–Arabidopsis interactions reveals plant transcriptional plasticity. Mol. Plant Microbe Interact. 34, 1071–1083 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sedlářová, M. et al. The role of nitric oxide in development and pathogenesis of biotrophic phytopathogens—downy and powdery mildews. Adv. Bot. Res. 77, 263–283 (2016).

Article  Google Scholar 

Kojima, H. et al. Bioimaging of nitric oxide with fluorescent indicators based on the rhodamine chromophore. Anal. Chem. 73, 1967–1973 (2001).

Article  CAS  PubMed  Google Scholar 

Lacza, Z. et al. The novel red-fluorescent probe DAR-4M measures reactive nitrogen species rather than NO. J. Pharmacol. Toxicol. Methods 52, 335–340 (2005).

Article  CAS  PubMed  Google Scholar 

Yu, H. et al. Conservation and expansion of transcriptional factor repertoire in the Fusarium oxysporum species complex. J. Fungi 9, 359 (2023).

Article  CAS  Google Scholar 

Ding, Y., Gardiner, D. M., Xiao, D. & Kazan, K. Regulators of nitric oxide signaling triggered by host perception in a plant pathogen. Proc. Natl Acad. Sci. USA 117, 11147–11157 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayashi, S. & Wu, H. C. Lipoproteins in bacteria. J. Bioenerg. Biomembr. 22, 451–471 (1990).

Article  CAS  PubMed  Google Scholar 

Schmidt, S. M. et al. MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genomics 14, 119 (2013).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif