StokstadJul, E. Devastating banana disease may have reached Latin America, could drive up global prices. Science https://doi.org/10.1126/science.aay7681 (2019).
Stover, R. H. Fusarial Wilt (Panama Disease) of Bananas and Other Musa Species (Commonwealth Mycological Institute, 1962).
Buddenhagen, I. Understanding strain diversity in Fusarium oxysporum f. sp. cubense and history of introduction of ‘tropical race 4’ to better manage banana production. In III International Symposium on Banana: ISHS-ProMusa Symposium on Recent Advances in Banana Crop Protection for Sustainable Production and Improved Livelihoods (eds Jones, D. & Van den Bergh I.) 193–204 (White River, 2009).
Viljoen, A., Ma, L.-J. & Molina, A. B. in Emerging Plant Diseases and Global Food Security (eds Ristaino, J. B. & Records, A.) 159–184 (The American Phytopathological Society, 2020).
Maymon, M., Sela, N., Shpatz, U., Galpaz, N. & Freeman, S. The origin and current situation of Fusarium oxysporum f. sp. cubense tropical race 4 in Israel and the Middle East. Sci. Rep. 10, 1590 (2020).
Maymon, M. et al. First report of Fusarium oxysporum f. sp. cubense tropical race 4 causing Fusarium wilt of Cavendish bananas in Israel. Plant Dis. 102, 2655 (2018).
García-Bastidas, F. et al. First report of Fusarium wilt tropical race 4 in Cavendish bananas caused by Fusarium odoratissimum in Colombia. Plant Dis. 104, 994–994 (2020).
Acuña, R. et al. First report of Fusarium oxysporum f. sp. cubense tropical race 4, causing Fusarium wilt in Cavendish bananas in Peru. Plant Dis. https://doi.org/10.1094/pdis-09-21-1951-pdn (2021).
Ma, L.-J. et al. Fusarium pathogenomics. Annu. Rev. Microbiol. 67, 399–416 (2013).
Article CAS PubMed Google Scholar
Dean, R. et al. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13, 414–430 (2012).
Article PubMed PubMed Central Google Scholar
Ma, L.-J. et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464, 367–373 (2010).
Article CAS PubMed PubMed Central Google Scholar
Yang, H., Yu, H. & Ma, L.-J. Accessory chromosomes in Fusarium oxysporum. Phytopathology 110, 1488–1496 (2020).
Article CAS PubMed PubMed Central Google Scholar
Zhang, Y. & Ma, L. J. Deciphering pathogenicity of Fusarium oxysporum from a phylogenomics perspective. Adv. Genet. 100, 179–209 (2017).
Article CAS PubMed Google Scholar
Does, H. & Rep, M. in Plant Fungal Pathogens (eds Bolton, M. & Thomma, B.) 427–437 (Humana Press, 2012).
van Dam, P. et al. Effector profiles distinguish formae speciales of Fusarium oxysporum. Environ. Microbiol. 18, 4087–4102 (2016).
Ploetz, R. C. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology 96, 653–656 (2006).
Ploetz, R. C. Management of Fusarium wilt of banana: a review with special reference to tropical race 4. Crop Prot. 73, 7–15 (2015).
Bentley, S., Pegg, K., Moore, N., Davis, R. & Buddenhagen, I. Genetic variation among vegetative compatibility groups of Fusarium oxysporum f. sp. cubense analyzed by DNA fingerprinting. Phytopathology 88, 1283–1293 (1998).
Article CAS PubMed Google Scholar
Katan, T. & Primo, P. D. Current status of vegetative compatibility groups in Fusarium oxysporum: supplement (1999). Phytoparasitica 27, 273–277 (1999).
Moore, N., Pegg, K., Allen, R. & Irwin, J. Vegetative compatibility and distribution of Fusarium oxysporum f. sp. cubense in Australia. Aust. J. Exp. Agric. 33, 797–802 (1993).
Fourie, G., Steenkamp, E., Gordon, T. & Viljoen, A. Evolutionary relationships among the Fusarium oxysporum f. sp. cubense vegetative compatibility groups. Appl. Environ. Microbiol. 75, 4770–4781 (2009).
Article CAS PubMed PubMed Central Google Scholar
Warmington, R. J. et al. High-quality draft genome sequence of the causal agent of the current Panama disease epidemic. Microbiol. Resour. Announc. 8, e00904-19 (2019).
Article PubMed PubMed Central Google Scholar
Yun, Y. et al. Genome data of Fusarium oxysporum f. sp. cubense race 1 and tropical race 4 isolates using long-read sequencing. Mol. Plant Microbe Interact. 32, 1270–1272 (2019).
Article CAS PubMed Google Scholar
Leiva, A. M. et al. Draft genome sequence of Fusarium oxysporum f. sp. cubense tropical race 4 from Peru, obtained by nanopore and illumina hybrid assembly. Microbiol. Resour. Announc. 11, e00347-22 (2022).
Article PubMed PubMed Central Google Scholar
Zheng, S.-J. et al. New geographical insights of the latest expansion of Fusarium oxysporum f. sp. cubense tropical race 4 into the greater Mekong subregion. Front. Plant Sci. 9, 457 (2018).
Article PubMed PubMed Central Google Scholar
O’Donnell, K., Kistler, H. C., Cigelnik, E. & Ploetz, R. C. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl Acad. Sci. USA 95, 2044–2049 (1998).
Article PubMed PubMed Central Google Scholar
Chellapan, B. V., van Dam, P., Rep, M., Cornelissen, B. J. & Fokkens, L. Non-canonical Helitrons in Fusarium oxysporum. Mob. DNA 7, 27 (2016).
Article PubMed PubMed Central Google Scholar
Marcos, A. T. et al. Nitric oxide synthesis by nitrate reductase is regulated during development in A. spergillus. Mol. Microbiol. 99, 15–33 (2016).
Article CAS PubMed Google Scholar
Brodhun, F. et al. An iron 13 S-lipoxygenase with an α-linolenic acid specific hydroperoxidase activity from Fusarium oxysporum. PLoS ONE 8, e64919 (2013).
Article CAS PubMed PubMed Central Google Scholar
Thatcher, L. F., Manners, J. M. & Kazan, K. Fusarium oxysporum hijacks COI1‐mediated jasmonate signaling to promote disease development in Arabidopsis. Plant J. 58, 927–939 (2009).
Article CAS PubMed Google Scholar
Guo, L. et al. Metatranscriptomic comparison of endophytic and pathogenic Fusarium–Arabidopsis interactions reveals plant transcriptional plasticity. Mol. Plant Microbe Interact. 34, 1071–1083 (2021).
Article CAS PubMed PubMed Central Google Scholar
Sedlářová, M. et al. The role of nitric oxide in development and pathogenesis of biotrophic phytopathogens—downy and powdery mildews. Adv. Bot. Res. 77, 263–283 (2016).
Kojima, H. et al. Bioimaging of nitric oxide with fluorescent indicators based on the rhodamine chromophore. Anal. Chem. 73, 1967–1973 (2001).
Article CAS PubMed Google Scholar
Lacza, Z. et al. The novel red-fluorescent probe DAR-4M measures reactive nitrogen species rather than NO. J. Pharmacol. Toxicol. Methods 52, 335–340 (2005).
Article CAS PubMed Google Scholar
Yu, H. et al. Conservation and expansion of transcriptional factor repertoire in the Fusarium oxysporum species complex. J. Fungi 9, 359 (2023).
Ding, Y., Gardiner, D. M., Xiao, D. & Kazan, K. Regulators of nitric oxide signaling triggered by host perception in a plant pathogen. Proc. Natl Acad. Sci. USA 117, 11147–11157 (2020).
Article CAS PubMed PubMed Central Google Scholar
Hayashi, S. & Wu, H. C. Lipoproteins in bacteria. J. Bioenerg. Biomembr. 22, 451–471 (1990).
Article CAS PubMed Google Scholar
Schmidt, S. M. et al. MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genomics 14, 119 (2013).
留言 (0)