Pimentel, G. C. & McClellan, A. L. Hydrogen bonding. Annu. Rev. Phys. Chem. 22, 347–385 (1971).
Kollman, P. A. & Allen, L. C. Theory of the hydrogen bond. Chem. Rev. 72, 283–303 (1972).
Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 41, 48–76 (2002).
Buemi, G. in Hydrogen Bonding—New Insights (ed. Grabowski, S. J.) 51–107 (Springer, 2006).
Aakeröy, C. B. & Seddon, K. R. The hydrogen bond and crystal engineering. Chem. Soc. Rev. 22, 397–407 (1993).
Jeffrey, G. A. & Saenger, W. Hydrogen Bonding in Biological Structures (Springer, 1991).
Doster, W. The dynamical transition of proteins, concepts and misconceptions. Eur. Biophys. J. 37, 591–602 (2008).
Article CAS PubMed Google Scholar
Dahl, P. J. et al. A 300-fold conductivity increase in microbial cytochrome nanowires due to temperature-induced restructuring of hydrogen bonding networks. Sci. Adv. 8, eabm7193 (2022).
Article CAS PubMed PubMed Central Google Scholar
Portfield, W. W. (ed.) in Inorganic Chemistry 2nd edn, 885–893 (Academic, 1993).
Mott, N. F. Metal–insulator transition. Rev. Mod. Phys. 40, 677–683 (1968).
Yang, Z., Ko, C. & Ramanathan, S. Oxide electronics utilizing ultrafast metal-insulator transitions. Annu. Rev. Mater. Res. 41, 337–367 (2011).
Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173–195 (2020).
Asamitsu, A., Tomioka, Y., Kuwahara, H. & Tokura, Y. Current switching of resistive states in magnetoresistive manganites. Nature 388, 50–52 (1997).
Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007).
Article CAS PubMed Google Scholar
Liang, Y. G. et al. Tuning the hysteresis of a metal-insulator transition via lattice compatibility. Nat. Commun. 11, 3539 (2020).
Article CAS PubMed PubMed Central Google Scholar
Tian, N. et al. Dimensionality-driven metal to Mott insulator transition in two-dimensional 1T-TaSe2. Natl Sci. Rev. 11, nwad144 (2024).
Zhang, W. et al. Role of vacancies in metal–insulator transitions of crystalline phase-change materials. Nat. Mater. 11, 952–956 (2012).
Article CAS PubMed Google Scholar
Chu, C. W., Harper, J. M. E., Geballe, T. H. & Greene, R. L. Pressure dependence of the metal-insulator transition in tetrathiofulvalinium tetracyanoquinodimethane (TTF-TCNQ). Phys. Rev. Lett. 31, 1491–1494 (1973).
Lee, S.-H., Goh, J. S. & Cho, D. Origin of the insulating phase and first-order metal-insulator transition in 1T-TaS2. Phys. Rev. Lett. 122, 106404 (2019).
Article CAS PubMed Google Scholar
Lu, N. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 546, 124–128 (2017).
Article CAS PubMed Google Scholar
Li, L. et al. Manipulating the insulator–metal transition through tip-induced hydrogenation. Nat. Mater. 21, 1246–1251 (2022).
Article CAS PubMed Google Scholar
Yi, W. et al. Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. 9, 4661 (2018).
Article PubMed PubMed Central Google Scholar
Ueda, A. et al. Hydrogen-bond-dynamics-based switching of conductivity and magnetism: a phase transition caused by deuterium and electron transfer in a hydrogen-bonded purely organic conductor crystal. J. Am. Chem. Soc. 136, 12184–12192 (2014).
Article CAS PubMed Google Scholar
Isono, T. et al. Hydrogen bond-promoted metallic state in a purely organic single-component conductor under pressure. Nat. Commun. 4, 1344 (2013).
Zhou, J. et al. Layered intercalation materials. Adv. Mater. 33, 2004557 (2021).
Passarelli, J. V. et al. Tunable exciton binding energy in 2D hybrid layered perovskites through donor–acceptor interactions within the organic layer. Nat. Chem. 12, 672–682 (2020).
Article CAS PubMed Google Scholar
Jin, S. et al. High-Tc superconducting phases in organic molecular intercalated iron selenides: synthesis and crystal structures. Chem. Commun. 53, 9729–9732 (2017).
Zhang, H. et al. Enhancement of superconductivity in organic-inorganic hybrid topological materials. Sci. Bull. 65, 188–193 (2020).
Coronado, E. et al. Coexistence of superconductivity and magnetism by chemical design. Nat. Chem. 2, 1031–1036 (2010).
Article CAS PubMed Google Scholar
Wan, C. et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14, 622–627 (2015).
Article CAS PubMed Google Scholar
Wang, N. et al. Transition from ferromagnetic semiconductor to ferromagnetic metal with enhanced Curie temperature in Cr2Ge2Te6 via organic ion intercalation. J. Am. Chem. Soc. 141, 17166–17173 (2019).
Article CAS PubMed Google Scholar
Ying, T. P. et al. Observation of superconductivity at 30∼46 K in AxFe2Se2(A = Li, Na, Ba, Sr, Ca, Yb and Eu). Sci. Rep. 2, 426 (2012).
Article CAS PubMed PubMed Central Google Scholar
Ying, T. et al. Superconducting phases in potassium-intercalated iron selenides. J. Am. Chem. Soc. 135, 2951–2954 (2013).
Article CAS PubMed Google Scholar
Sun, R. et al. Intercalating anions between terminated anion layers: unusual ionic S–Se bonds and hole-doping induced superconductivity in S0.24(NH3)0.26Fe2Se2. J. Am. Chem. Soc. 141, 13849–13857 (2019).
Article CAS PubMed PubMed Central Google Scholar
Fan, X. et al. Nematicity and superconductivity in orthorhombic superconductor Na0.35(C3N2H10)0.426Fe2Se2. Phys. Rev. Mater. 2, 114802 (2018).
Kobayashi, M. & Tanaka, H. The reversibility and first-order nature of liquid–liquid transition in a molecular liquid. Nat. Commun. 7, 13438 (2016).
Article CAS PubMed PubMed Central Google Scholar
Luo, J.-B., Wei, J.-H., Zhang, Z.-Z., He, Z.-L. & Kuang, D.-B. A melt-quenched luminescent glass of an organic–inorganic manganese halide as a large-area scintillator for radiation detection. Angew. Chem. Int. Ed. 62, e202216504 (2023).
留言 (0)