Dynamic-to-static switch of hydrogen bonds induces a metal–insulator transition in an organic–inorganic superlattice

Pimentel, G. C. & McClellan, A. L. Hydrogen bonding. Annu. Rev. Phys. Chem. 22, 347–385 (1971).

Article  CAS  Google Scholar 

Kollman, P. A. & Allen, L. C. Theory of the hydrogen bond. Chem. Rev. 72, 283–303 (1972).

Article  CAS  Google Scholar 

Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 41, 48–76 (2002).

Article  CAS  Google Scholar 

Buemi, G. in Hydrogen Bonding—New Insights (ed. Grabowski, S. J.) 51–107 (Springer, 2006).

Aakeröy, C. B. & Seddon, K. R. The hydrogen bond and crystal engineering. Chem. Soc. Rev. 22, 397–407 (1993).

Article  Google Scholar 

Jeffrey, G. A. & Saenger, W. Hydrogen Bonding in Biological Structures (Springer, 1991).

Doster, W. The dynamical transition of proteins, concepts and misconceptions. Eur. Biophys. J. 37, 591–602 (2008).

Article  CAS  PubMed  Google Scholar 

Dahl, P. J. et al. A 300-fold conductivity increase in microbial cytochrome nanowires due to temperature-induced restructuring of hydrogen bonding networks. Sci. Adv. 8, eabm7193 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Portfield, W. W. (ed.) in Inorganic Chemistry 2nd edn, 885–893 (Academic, 1993).

Mott, N. F. Metal–insulator transition. Rev. Mod. Phys. 40, 677–683 (1968).

Article  CAS  Google Scholar 

Yang, Z., Ko, C. & Ramanathan, S. Oxide electronics utilizing ultrafast metal-insulator transitions. Annu. Rev. Mater. Res. 41, 337–367 (2011).

Article  CAS  Google Scholar 

Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173–195 (2020).

Article  CAS  Google Scholar 

Asamitsu, A., Tomioka, Y., Kuwahara, H. & Tokura, Y. Current switching of resistive states in magnetoresistive manganites. Nature 388, 50–52 (1997).

Article  CAS  Google Scholar 

Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007).

Article  CAS  PubMed  Google Scholar 

Liang, Y. G. et al. Tuning the hysteresis of a metal-insulator transition via lattice compatibility. Nat. Commun. 11, 3539 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian, N. et al. Dimensionality-driven metal to Mott insulator transition in two-dimensional 1T-TaSe2. Natl Sci. Rev. 11, nwad144 (2024).

Article  CAS  Google Scholar 

Zhang, W. et al. Role of vacancies in metal–insulator transitions of crystalline phase-change materials. Nat. Mater. 11, 952–956 (2012).

Article  CAS  PubMed  Google Scholar 

Chu, C. W., Harper, J. M. E., Geballe, T. H. & Greene, R. L. Pressure dependence of the metal-insulator transition in tetrathiofulvalinium tetracyanoquinodimethane (TTF-TCNQ). Phys. Rev. Lett. 31, 1491–1494 (1973).

Article  CAS  Google Scholar 

Lee, S.-H., Goh, J. S. & Cho, D. Origin of the insulating phase and first-order metal-insulator transition in 1T-TaS2. Phys. Rev. Lett. 122, 106404 (2019).

Article  CAS  PubMed  Google Scholar 

Lu, N. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 546, 124–128 (2017).

Article  CAS  PubMed  Google Scholar 

Li, L. et al. Manipulating the insulator–metal transition through tip-induced hydrogenation. Nat. Mater. 21, 1246–1251 (2022).

Article  CAS  PubMed  Google Scholar 

Yi, W. et al. Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. 9, 4661 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Ueda, A. et al. Hydrogen-bond-dynamics-based switching of conductivity and magnetism: a phase transition caused by deuterium and electron transfer in a hydrogen-bonded purely organic conductor crystal. J. Am. Chem. Soc. 136, 12184–12192 (2014).

Article  CAS  PubMed  Google Scholar 

Isono, T. et al. Hydrogen bond-promoted metallic state in a purely organic single-component conductor under pressure. Nat. Commun. 4, 1344 (2013).

Article  PubMed  Google Scholar 

Zhou, J. et al. Layered intercalation materials. Adv. Mater. 33, 2004557 (2021).

Article  CAS  Google Scholar 

Passarelli, J. V. et al. Tunable exciton binding energy in 2D hybrid layered perovskites through donor–acceptor interactions within the organic layer. Nat. Chem. 12, 672–682 (2020).

Article  CAS  PubMed  Google Scholar 

Jin, S. et al. High-Tc superconducting phases in organic molecular intercalated iron selenides: synthesis and crystal structures. Chem. Commun. 53, 9729–9732 (2017).

Article  CAS  Google Scholar 

Zhang, H. et al. Enhancement of superconductivity in organic-inorganic hybrid topological materials. Sci. Bull. 65, 188–193 (2020).

Article  CAS  Google Scholar 

Coronado, E. et al. Coexistence of superconductivity and magnetism by chemical design. Nat. Chem. 2, 1031–1036 (2010).

Article  CAS  PubMed  Google Scholar 

Wan, C. et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14, 622–627 (2015).

Article  CAS  PubMed  Google Scholar 

Wang, N. et al. Transition from ferromagnetic semiconductor to ferromagnetic metal with enhanced Curie temperature in Cr2Ge2Te6 via organic ion intercalation. J. Am. Chem. Soc. 141, 17166–17173 (2019).

Article  CAS  PubMed  Google Scholar 

Ying, T. P. et al. Observation of superconductivity at 30∼46 K in AxFe2Se2(A = Li, Na, Ba, Sr, Ca, Yb and Eu). Sci. Rep. 2, 426 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ying, T. et al. Superconducting phases in potassium-intercalated iron selenides. J. Am. Chem. Soc. 135, 2951–2954 (2013).

Article  CAS  PubMed  Google Scholar 

Sun, R. et al. Intercalating anions between terminated anion layers: unusual ionic S–Se bonds and hole-doping induced superconductivity in S0.24(NH3)0.26Fe2Se2. J. Am. Chem. Soc. 141, 13849–13857 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan, X. et al. Nematicity and superconductivity in orthorhombic superconductor Na0.35(C3N2H10)0.426Fe2Se2. Phys. Rev. Mater. 2, 114802 (2018).

Article  CAS  Google Scholar 

Kobayashi, M. & Tanaka, H. The reversibility and first-order nature of liquid–liquid transition in a molecular liquid. Nat. Commun. 7, 13438 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo, J.-B., Wei, J.-H., Zhang, Z.-Z., He, Z.-L. & Kuang, D.-B. A melt-quenched luminescent glass of an organic–inorganic manganese halide as a large-area scintillator for radiation detection. Angew. Chem. Int. Ed. 62, e202216504 (2023).

Article 

留言 (0)

沒有登入
gif