The tightest self-assembled ruthenium metal–organic framework combined with proximity hybridization for ultrasensitive electrochemiluminescence analysis of paraquat

Li C, Xie Z, Chen Q, Zhang Y, Chu Y, Guo Q, Zhou W, Zhang Y, Liu P, Chen H, Jiang C, Sun K, Sun T. Supramolecular hunter stationed on red blood cells for detoxification based on specific molecular recognition. ACS Nano. 2020;14:4950–62.

Article  CAS  PubMed  Google Scholar 

Wang F, Zhang X, Huangfu C, Zhi H, Wang Y, Feng L. Novel paraquat detection strategy enabled by carboxylatopillar[5]arene confined in nanochannels on a paper-based sensor. Anal Chem. 2022;94:18059–66.

Article  CAS  PubMed  Google Scholar 

Wiwasuku T, Chuaephon A, Habarakada U, Boonmak J, Puangmali T, Kielar F, Harding DJ, Youngme S. A water-stable lanthanide-based MOF as a highly sensitive sensor for the selective detection of paraquat in agricultural products. ACS Sustain Chem Eng. 2022;10:2761–71.

Article  CAS  Google Scholar 

Duan W, Liu C, Zhou J, Yu Q, Duan Y, Zhang T, Li Y, Fu G, Sun Y, Tian J, Xia Z, Yang Y, Liu Y, Xu S. Upregulation of mitochondrial calcium uniporter contributes to paraquat-induced neuropathology linked to Parkinson’s disease via imbalanced OPA1 processing. J Hazard Mater. 2023;453:131369.

Article  CAS  PubMed  Google Scholar 

El-Saadi MW, Tian X, Grames M, Ren M, Keys K, Li H, Knott E, Yin H, Huang S, Lu XH. Tracing brain genotoxic stress in Parkinson’s disease with a novel single-cell genetic sensor. Sci Adv. 2022;8: d1700.

Article  Google Scholar 

Tong T, Duan W, Xu Y, Hong H, Xu J, Fu G, Wang X, Yang L, Deng P, Zhang J, He H, Mao G, Lu Y, Lin X, Yu Z, Pi H, Cheng Y, Xu S, Zhou Z. Paraquat exposure induces Parkinsonism by altering lipid profile and evoking neuroinflammation in the midbrain. Environ Int. 2022;169:107512.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Li L, Wang Y, Wang H, Xu Z, Tian Y, Sun Y, Yang J, Shen Y. Ultrasensitive and rapid colorimetric detection of paraquat via a high specific VHH nanobody. Biosens Bioelectron. 2022;205:114089.

Article  CAS  PubMed  Google Scholar 

Ran J, Zhang L, Yao J, Wang S, Liang P, Dong N. Cucurbit[7]uril as a matrix solid-phase dispersion for the extraction of quaternary ammonium pesticides from vegetables and their determination using HPLC–UV. Food Chem. 2021;350:129236.

Article  CAS  PubMed  Google Scholar 

Guterres Silva LR, Santos Stefano J, Cornélio Ferreira Nocelli R, Campos Janegitz B. 3D electrochemical device obtained by additive manufacturing for sequential determination of paraquat and carbendazim in food samples. Food Chem. 2023;406:135038.

Article  CAS  PubMed  Google Scholar 

Kang Z, Yang J, Jiang J, Zhao L, Zhang Y, Tu Q, Wang J, Yuan M. Pillar[5]arenes modified tetraphenylethylene as fluorescent chemosensor for paraquat detection. Sens Actuators B Chem. 2022;370:132436.

Article  CAS  Google Scholar 

Kumar NM, Picchetti P, Hu C, Grimm LM, Biedermann F. Chemiluminescent cucurbit[n]uril-based chemosensor for the detection of drugs in biofluids. ACS Sensors. 2022;7:2312–9.

Article  CAS  PubMed  Google Scholar 

Jian X, Xu J, Guo J, Zhao J, Shen T, Gao Z, Song YY. Cascade-gates guarded asymmetrical nanochannel membrane: an interference-free device for straightforward detection of trace biomarker in undiluted serum. Small. 2023;19:2205995.

Article  CAS  Google Scholar 

Li J, Jia H, Ren X, Li Y, Liu L, Feng R, Ma H, Wei Q. Dumbbell plate-shaped AIEgen-based luminescent MOF with high quantum yield as self-enhanced ECL tags: mechanism insights and biosensing application. Small. 2022;18:2106567.

Article  CAS  Google Scholar 

Song X, Zhao L, Zhang N, Liu L, Ren X, Ma H, Luo C, Li Y, Wei Q. Zinc-based metal–organic framework with MLCT properties as an efficient electrochemiluminescence probe for trace detection of trenbolone. Anal Chem. 2022;94:14054–60.

Article  CAS  PubMed  Google Scholar 

Meng C, Knežević S, Du F, Guan Y, Kanoufi F, Sojic N, Xu G. Recent advances in electrochemiluminescence imaging analysis. eScience. 2022;2:591–605.

Article  Google Scholar 

Qin X, Zhan Z, Ding Z. Progress in electrochemiluminescence biosensors based on organic framework emitters. Curr Opin Electrochem. 2023;39:101283.

Article  CAS  Google Scholar 

Yang Y, Jiang H, Li J, Zhang J, Gao S, Lu M, Zhang X, Liang W, Zou X, Yuan R, Xiao D. Highly stable Ru-complex-based metal-covalent organic frameworks as novel type of electrochemiluminescence emitters for ultrasensitive biosensing. Mater Horiz. 2023;10:3005–13.

Article  CAS  PubMed  Google Scholar 

Daviddi E, Oleinick A, Svir I, Valenti G, Paolucci F, Amatore C. Theory and simulation for optimising electrogenerated chemiluminescence from tris(2,2′-bipyridine)-ruthenium (II)-doped silica nanoparticles and tripropylamine. ChemElectroChem. 2017;4:1719–30.

Article  CAS  Google Scholar 

Liu Y, Zhang H, Li B, Liu J, Jiang D, Liu B, Sojic N. Single biomolecule imaging by electrochemiluminescence. J Am Chem Soc. 2021;143:17910–4.

Article  CAS  PubMed  Google Scholar 

Li Y, Liu D, Meng S, Zhang J, Li L, You T. Regulation of Ru(bpy)32+ electrochemiluminescence based on distance-dependent electron transfer of ferrocene for dual-signal readout detection of aflatoxin b1 with high sensitivity. Anal Chem. 2022;94:1294–301.

Article  CAS  PubMed  Google Scholar 

Zhang X, Tian L, Sun Z, Wu Q, Shan X, Zhao Y, Chen R, Lu J. A molecule-imprinted electrochemiluminescence sensor based on self-accelerated Ru(bpy)32+@ZIF-7 for ultra-sensitive detection of procymidone. Food Chem. 2022;391:133235.

Article  CAS  PubMed  Google Scholar 

Tian Y, Zhu G. Porous aromatic frameworks (PAFs). Chem Rev. 2020;120:8934–86.

Article  CAS  PubMed  Google Scholar 

Mohan B, Kumar S, Kumar V, Jiao T, Sharma HK, Chen Q. Electrochemiluminescence metal-organic frameworks biosensing materials for detecting cancer biomarkers. TrAC-Trend Anal Chem. 2022;157:116735.

Article  CAS  Google Scholar 

Huang W, Hu G, Liang W, Wang J, Lu M, Yuan R, Xiao D. Ruthenium (II) complex-grafted hollow hierarchical metal–organic frameworks with superior electrochemiluminescence performance for sensitive assay of thrombin. Anal Chem. 2021;93:6239–45.

Article  CAS  PubMed  Google Scholar 

Zhao G, Wang Y, Li X, Yue Q, Dong X, Du B, Cao W, Wei Q. Dual-quenching electrochemiluminescence strategy based on three-dimensional metal–organic frameworks for ultrasensitive detection of amyloid-β. Anal Chem. 2019;91:1989–96.

Article  CAS  PubMed  Google Scholar 

Li B, Huang X, Lu Y, Fan Z, Li B, Jiang D, Sojic N, Liu B. High Electrochemiluminescence from Ru(bpy)32+ embedded metal–organic frameworks to visualize single molecule movement at the cellular membrane. Adv Sci. 2022;9:2204715.

Article  CAS  Google Scholar 

Liu Y, Wang F, Ge S, Zhang L, Zhang Z, Liu Y, Zhang Y, Ge S, Yu J. Programmable T-junction structure-assisted CRISPR/Cas12a electrochemiluminescence biosensor for detection of Sa-16S rDNA. ACS Appl Mater Interfaces. 2023;15:617–25.

Article  PubMed  Google Scholar 

Wang Q, Xiong C, Li J, Deng Q, Zhang X, Wang S, Chen M. High-performance electrochemiluminescence sensors based on ultra-stable perovskite quantum dots@ZIF-8 composites for aflatoxin B1 monitoring in corn samples. Food Chem. 2023;410:135325.

Article  CAS  PubMed  Google Scholar 

Yan M, Ye J, Zhu Q, Zhu L, Huang J, Yang X. Ultrasensitive immunosensor for cardiac troponin I detection based on the electrochemiluminescence of 2D Ru-MOF nanosheets. Anal Chem. 2019;91:10156–63.

Article  CAS  PubMed  Google Scholar 

Huang X, Zhang Y, Xu W, Xu W, Guo L, Qiu B, Lin Z. An ultrasensitive electrochemiluminescence biosensor for nuclear factor kappa B p50 based on the proximity hybridization-induced hybridization chain reaction. Chem Commun. 2019;55:12980–3.

Article  CAS  Google Scholar 

Zhang R, Wu J, Ao H, Fu J, Qiao B, Wu Q, Ju H. A rolling circle-amplified G-quadruplex/hemin DNAzyme for chemiluminescence immunoassay of the SARS-CoV-2 protein. Anal Chem. 2021;93:9933–8.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif