Challenges faced with 3D-printed electrochemical sensors in analytical applications

Veloso WB, Paixão TRLC, Meloni GN. 3D printed electrodes design and voltammetric response. Electrochim Acta. 2023;449: 142166. https://doi.org/10.1016/J.ELECTACTA.2023.142166.

Article  CAS  Google Scholar 

Ambrosi A, Pumera M. 3D-printing technologies for electrochemical applications. Chem Soc Rev. 2016;45:2740–55. https://doi.org/10.1039/C5CS00714C.

Article  CAS  PubMed  Google Scholar 

Sharma A, Faber H, Khosla A, Anthopoulos TD. 3D printed electrochemical devices for bio-chemical sensing: a review. Mater Sci Eng R Rep. 2023;156: 100754. https://doi.org/10.1016/J.MSER.2023.100754.

Article  Google Scholar 

Pradela-Filho LA, Veloso WB, Medeiros DN, Lins RSO, Ferreira B, Bertotti M, Paixão TRLC. Patterning (electro)chemical treatment-free electrodes with a 3D printing pen. Anal Chem. 2023;95:10634–43. https://doi.org/10.1021/acs.analchem.3c01084.

Article  CAS  PubMed  Google Scholar 

Pradela Filho LA, Paixão TRLC, Nordin GP, Woolley AT. Leveraging the third dimension in microfluidic devices using 3D printing: no longer just scratching the surface. Anal Bioanal Chem. 2023. https://doi.org/10.1007/s00216-023-04862-w.

Article  PubMed  Google Scholar 

Singh Shergill R, Anil Patel B. Preprinting saponification of carbon thermoplastic filaments provides ready-to-use electrochemical sensors. ACS Appl Electron Mater. 2023;5:5120–8. https://doi.org/10.1021/acsaelm.3c00862.

Article  CAS  Google Scholar 

Manzanares Palenzuela CL, Novotný F, Krupička P, Sofer Z, Pumera M. 3D-printed graphene/polylactic acid electrodes promise high sensitivity in electroanalysis. Anal Chem. 2018;90:5753–7. https://doi.org/10.1021/acs.analchem.8b00083.

Article  CAS  PubMed  Google Scholar 

Cardoso RM, Mendonça DMH, Silva WP, Silva MNT, Nossol E, da Silva RAB, Richter EM, Muñoz RAA. 3D printing for electroanalysis: from multiuse electrochemical cells to sensors. Anal Chim Acta. 2018;1033:49–57. https://doi.org/10.1016/j.aca.2018.06.021.

Article  CAS  PubMed  Google Scholar 

Katic V, Dos Santos PL, Dos Santos MF, Pires BM, Loureiro HC, Lima AP, Queiroz JCM, Landers R, Muñoz RAA, Bonacin JA. 3D printed graphene electrodes modified with Prussian blue: emerging electrochemical sensing platform for peroxide detection. ACS Appl Mater Interfaces. 2019;11:35068–78. https://doi.org/10.1021/acsami.9b09305.

Article  CAS  PubMed  Google Scholar 

Abdalla A, Patel BA. 3D printed electrochemical sensors. Annu Rev Anal Chem. 2021;14:47–63. https://doi.org/10.1146/annurev-anchem-091120-093659.

Article  CAS  Google Scholar 

de Matos Morawski F, Martins G, Ramos MK, Zarbin AJG, Blanes L, Bergamini MF, Marcolino-Junior LH. A versatile 3D printed multi-electrode cell for determination of three COVID-19 biomarkers. Anal Chim Acta. 2023;1258. https://doi.org/10.1016/j.aca.2023.341169

Sigley E, Kalinke C, Crapnell RD, Whittingham JM, Williams RJ, Keefe EM, Campos Janegitz B, Alves Bonacin J, Banks CE. Circular economy electrochemistry: creating additive manufacturing feedstocks for caffeine detection from post-industrial coffee pod waste. ACS Sustain Chem Eng. 2023;11:2978–88. https://doi.org/10.1021/acssuschemeng.2c06514.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saggiomo V. A 3D printer in the lab: not only a toy. Adv Sci. 2022;9:1–8. https://doi.org/10.1002/advs.202202610.

Article  Google Scholar 

UltiMaker S7 3D Printer. https://store.makerbot.com/3d-printers/s-series-3d-printers/ultimaker-s7-3d-printer. Accessed 10 March 2024

Petroni JM, Neves MM, de Moraes NC, Bezerra da Silva RA, Ferreira VS, Lucca BG. Development of highly sensitive electrochemical sensor using new graphite/acrylonitrile butadiene styrene conductive composite and 3D printing-based alternative fabrication protocol. Anal Chim Acta. 2021;1167. https://doi.org/10.1016/j.aca.2021.338566

Tully JJ, Meloni GN. A scientist’s guide to buying a 3D printer: how to choose the right printer for your laboratory. Anal Chem. 2020;92:14853–60. https://doi.org/10.1021/acs.analchem.0c03299.

Article  CAS  PubMed  Google Scholar 

Stefano JS, Guterres e Silva LR, Rocha RG, Brazaca LC, Richter EM, Abarza Muñoz RA, Janegitz BC. New conductive filament ready-to-use for 3D-printing electrochemical (bio)sensors: towards the detection of SARS-CoV-2. Anal Chim Acta. 2021;1191:339372. https://doi.org/10.1016/j.aca.2021.339372.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Foster CW, Elbardisy HM, Down MP, Keefe EM, Smith GC, Banks CE. Additively manufactured graphitic electrochemical sensing platforms. Chem Eng J. 2020;381: 122343. https://doi.org/10.1016/J.CEJ.2019.122343.

Article  CAS  Google Scholar 

Cruz MA, Ye S, Kim MJ, Reyes C, Yang F, Flowers PF, Wiley BJ. Multigram synthesis of Cu-Ag core–shell nanowires enables the production of a highly conductive polymer filament for 3D printing electronics. Part Part Syst Charact. 2018;35:1700385. https://doi.org/10.1002/ppsc.201700385.

Article  CAS  Google Scholar 

Stefano JS, Kalinke C, Da Rocha RG, Rocha DP, Da Silva VAOP, Bonacin JA, Angnes L, Richter EM, Janegitz BC, Muñoz RAA. Electrochemical (bio)sensors enabled by fused deposition modeling-based 3D Printing: a guide to selecting designs, printing parameters, and post-treatment protocols. Anal Chem. 2022;94:6417–29. https://doi.org/10.1021/acs.analchem.1c05523.

Article  CAS  PubMed  Google Scholar 

Crapnell RD, Kalinke C, Silva LRG, Stefano JS, Williams RJ, Abarza Munoz RA, Bonacin JA, Janegitz BC, Banks CE. Additive manufacturing electrochemistry: an overview of producing bespoke conductive additive manufacturing filaments. Mater Today. 2023;71:73–90. https://doi.org/10.1016/J.MATTOD.2023.11.002.

Article  Google Scholar 

Silva-Neto HA, Duarte-Junior GF, Rocha DS, Bedioui F, Varenne A, Coltro WKT. Recycling 3D printed residues for the development of disposable paper-based electrochemical sensors. ACS Appl Mater Interfaces. 2023. https://doi.org/10.1021/acsami.3c00370.

Article  PubMed  Google Scholar 

Arantes IVS, Crapnell RD, Whittingham JM, Sigley E, Paixão TRLC, Banks CE. Additive manufacturing of a portable electrochemical sensor with a recycled conductive filament for the detection of atropine in spiked drink samples. ACS Appl Eng Mater. 2023;1:2397–406. https://doi.org/10.1021/acsaenm.3c00345.

Article  CAS  Google Scholar 

Crapnell RD, Arantes IVS, Camargo JR, Bernalte E, Whittingham MJ, Janegitz BC, Paixão TRLC, Banks CE. Multi-walled carbon nanotubes/carbon black/rPLA for high-performance conductive additive manufacturing filament and the simultaneous detection of acetaminophen and phenylephrine. Microchim Acta. 2024;191:96. https://doi.org/10.1007/s00604-023-06175-2.

Article  CAS  Google Scholar 

Meloni GN, Bertotti M. 3D printing scanning electron microscopy sample holders: a quick and cost effective alternative for custom holder fabrication. PLoS ONE. 2017;12: e0182000. https://doi.org/10.1371/journal.pone.0182000.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalinke C, Neumsteir NV, Aparecido GDO, Ferraz TVDB, Dos Santos PL, Janegitz BC, Bonacin JA. Comparison of activation processes for 3D printed PLA-graphene electrodes: electrochemical properties and application for sensing of dopamine. Analyst. 2020;145:1207–18. https://doi.org/10.1039/c9an01926j.

Article  CAS  PubMed  Google Scholar 

Torres LM, Gil AF, Galicia L, González I. Understanding the difference between inner- and outer-sphere mechanisms: an electrochemical experiment. J Chem Educ. 1996;73:808. https://doi.org/10.1021/ed073p808.

Article  CAS  Google Scholar 

Crapnell RD, Garcia-Miranda Ferrari A, Whittingham MJ, Sigley E, Hurst NJ, Keefe EM, Banks CE. Adjusting the connection length of additively manufactured electrodes changes the electrochemical and electroanalytical performance. Sensors. 2022;22:9521. https://doi.org/10.3390/s22239521.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shergill RS, Patel BA. The effects of material extrusion printing speed on the electrochemical activity of carbon black/polylactic acid electrodes**. ChemElectroChem. 2022;9:1–8. https://doi.org/10.1002/celc.202200831.

Article  CAS  Google Scholar 

Bernalte E, Crapnell RD, Messai OMA, Banks CE. The effect of slicer infill pattern on the electrochemical performance of additively manufactured electrodes. Chem Electro Chem. 2024;1–10. https://doi.org/10.1002/celc.202300576

Kalinke C, Crapnell RD, Sigley E, Whittingham MJ, de Oliveira PR, Brazaca LC, Janegitz BC, Bonacin JA, Banks CE. Recycled additive manufacturing feedstocks with carboxylated multi-walled carbon nanotubes toward the detection of yellow fever virus cDNA. Chem Eng J. 2023;467: 143513. https://doi.org/10.1016/j.cej.2023.143513.

Article  CAS  Google Scholar 

Bin Hamzah HH, Keattch O, Covill D, Patel BA. The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes. Sci Rep. 2018;8:9135.

留言 (0)

沒有登入
gif