Sensitive detection of uric acid based on low-triggering-potential cathodic luminol electrochemiluminescence achieved by ReS2 nanosheets

Wu P, Hou XD, Xu JJ, Chen HY. Electrochemically generated versus photoexcited luminescence from semiconductor nanomaterials: bridging the valley between two worlds. Chem Rev. 2014;114:11027.

Article  CAS  PubMed  Google Scholar 

Jiang JJ, Chen D, Du XZ. Ratiometric electrochemiluminescence sensing platform for sensitive glucose detection based on in situ generation and conversion of coreactants. Sens Actuator B. 2017;251:256.

Article  CAS  Google Scholar 

Miao WJ. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108:2506.

Article  CAS  PubMed  Google Scholar 

Li J, Guo SJ, Wang EK. Recent advances in new luminescent nanomaterials for electrochemiluminescence sensors. RSC Adv. 2012;2:3579.

Article  CAS  Google Scholar 

Song Y, Zhang W, He SJ, Shang L, Ma RN, Jia LP, Wang HS. Perylene diimide and luminol as potential-resolved electrochemiluminescence nanoprobes for dual targets immunoassay at low potential. ACS App Mater Interfaces. 2019;11:33676.

Article  CAS  Google Scholar 

Lei YM, Huang WX, Zhao M, Cai YQ, Yuan R, Zhuo Y. Electrochemiluminescence resonance energy transfer system: mechanism and application in ratiometric aptasensor for lead ion. Anal Chem. 2015;87:7787.

Article  CAS  PubMed  Google Scholar 

Gu WL, Wang HJ, Jiao L, Wu Y, Chen YX, Hu LY, Gong JM, Du D, Zhu CZ. Single-atom iron boosts electrochemiluminescence. Angew Chem Int Ed. 2020;59:3534.

Article  CAS  Google Scholar 

Liu JL, Yang R, Chai YQ, Yuan R. Versatile luminol/dissolved oxygen/Fe@Fe2O3 nanowire ternary electrochemiluminescence system combined with highly efficient strand displacement amplification for ultrasensitive microRNA detection. Anal Chem. 2021;93:13334.

Article  CAS  PubMed  Google Scholar 

Wang X, Shang L, Zhang W, Jia LP, Ma RN, Jia WL, Wang HS. An ultrasensitive luminol cathodic electrochemiluminescence probe with highly porous Pt on ionic liquid functionalized graphene film as platform for carcinoembryonic antigen sensing. Biosens Bioeletron. 2019;141: 111436.

Article  CAS  Google Scholar 

Wu FF, Zhou Y, Zhang H, Yuan R, Chai YQ. Electrochemiluminescence peptide-based biosensor with heteronanostructures as coreaction accelerator for the ultrasensitive determination of tryptase. Anal Chem. 2018;90:2263.

Article  CAS  PubMed  Google Scholar 

Liang JL, Xu QH, Teng X, Guan WJ, Lu C. Superoxide-triggered luminol electrochemiluminescence for detection of oxygen vacancy in oxides. Anal Chem. 2020;92:1628.

Article  CAS  PubMed  Google Scholar 

Xu SJ, Liu Y, Wang TH, Li JH. Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Anal Chem. 2011;83:3817.

Article  CAS  PubMed  Google Scholar 

Zhao CL, Ma CY, Zhang FP, Li WJ, Hong CL, Qi Y. Two-dimensional metal-organic framework nanosheets: an efficient two-electron oxygen reduction reaction electrocatalyst for boosting cathodic luminol electrochemiluminescence. Chem Eng J. 2023;466: 143156.

Article  CAS  Google Scholar 

Xia HY, Zheng XL, Li J, Wang LG, Xue Y, Peng C, Han YC, Wang Y, Guo SJ, Wang J, Wang EK. Identifying luminol electrochemiluminescence at the cathode via single-atom catalysts tuned oxygen reduction reaction. J Am Chem Soc. 2022;144:7741.

Article  CAS  PubMed  Google Scholar 

Gu WL, Wang XS, Xi MZ, Wei XQ, Jiao L, Qin Y, Huang JJ, Cui XW, Zheng LR, Hu LY, Zhu CZ. Single-atom iron enables strong low-triggering-potential luminol cathodic electrochemiluminescence. Anal Chem. 2022;94:9459.

Article  CAS  PubMed  Google Scholar 

Lin YP, Chen X, Lin YX, Zhou Q, Tang DP. Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite made from carbon nanotubes and molybdenum disulfide. Microchim Acta. 2015;182:1803.

Article  CAS  Google Scholar 

Zhou JX, Tang LN, Yang F, Liang FX, Wang H, Li YT, Zhang GJ. MoS2/Pt nanocomposite-functionalized microneedle for real-time monitoring of hydrogen peroxide release from living cells. Analyst. 2017;142:4322.

Article  CAS  PubMed  Google Scholar 

Xue YD, Cai WQ, Zheng SL, Yan WY, Hu JG, Sun Z, Zhang Y, Jin W. W-doped MoS2 nanosheets as a highly-efficient catalyst for hydrogen peroxide electroreduction in alkaline media. Catal Sci Technol. 2017;7:5733.

Article  CAS  Google Scholar 

Wang TY, Zhu HC, Zhuo JQ, Zhu ZW, Papakonstantinou P, Lubarsky G, Lin J, Li MX. Biosensor based on ultrasmall MoS2nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal Chem. 2013;85:10289.

Article  CAS  PubMed  Google Scholar 

Aparna MP, Chatanathodi R. Oxygen reduction and hydrogen evolution reactions on zigzag ReS2 nanoribbons. Appl Surf Sci. 2023;618: 156677.

Article  CAS  Google Scholar 

Wang L, Sofer Z, Luxa J, Sedmidubsky D, Ambrosi A, Pumera M. Layered rhenium sulfide on free-standing three-dimensional electrodes is highly catalytic for the hydrogen evolution reactions: experimental and theoretical study. Electrochem Commun. 2016;63:39.

Article  Google Scholar 

Chia XY, Pumera M. Layered transition metal dichalcogenide electrochemistry: journey across the periodic table. Chem Soc Rev. 2018;47:5602.

Article  CAS  PubMed  Google Scholar 

Park S, Ha JS, Khan MF, Im C, Park JY, Yoo SH, Rehman MA, Kang K, Lee SH, Jun SC. Pronounced optoelectronic effect in n-n ReS2 homostructure. ACS Appl Electron Mater. 2022;4:4306.

Article  CAS  Google Scholar 

Wang FZ, Hu JQ, Liang R, Lei WS, Lou ZR, Pan XH, Lu B, Ye ZZ. Novel ReS2/g-C3N4 heterojunction photocatalyst formed by electrostatic self-assembly with increased H2 production. Int J Hydrogen Energy. 2022;47:29284.

Article  CAS  Google Scholar 

Zhang Q, Tan SJ, Mendes RG, Sun ZT, Chen YT, Kong X, Xue YH, Rümmeli MH, Wu XJ, Chen SL, Fu L. Extremely weak van der Waals coupling in vertical ReS2 nanowalls for high-current-density lithium-ion batteries. Adv Mater. 2016;28:2616.

Article  CAS  PubMed  Google Scholar 

Qi F, Chen YF, Zheng BJ, He JR, Li Q, Wang XQ, Yu B, Lin J, Zhou JH, Li PJ, Zhang WL. 3D chrysanthemum-like ReS2 microspheres composed of curly few-layered nanosheets with enhanced electrochemical properties for lithium-ion batteries. J Mater Sci. 2017;52:3622.

Article  CAS  Google Scholar 

Borowiec J, Gillin WP, Willis MAC, Boi FS, He Y, Wen JQ, Wang SL, Schulz L. Room temperature synthesis of ReS2 through aqueous perrhenate sulfidation. J Phys: Condens Matter. 2018;30:055702.

PubMed  Google Scholar 

Cui H, Zou GZ, Lin XQ. Electrochemiluminescence of luminol in alkaline solution at a paraffin-impregnated graphite electrode. Anal Chem. 2003;75:324.

Article  CAS  PubMed  Google Scholar 

Liu JL, Tang ZL, Zhuo Y, Chai YQ, Yuan R. Ternary electrochemiluminescence system based on rubrene microrods as luminophore and Pt nanomaterials as coreaction accelerator for ultrasensitive detection of microRNA from cancer cells. Anal Chem. 2017;89:9108.

Article  CAS  PubMed  Google Scholar 

Yang L, Jia Y, Wu D, Zhang Y, Ju HX, Du Y, Ma HM, Wei Q. Synthesis and application of CeO2/SnS2 heterostructures as highly efficient coreaction accelerator in the luminol-dissolved O2 system for ultrasensitive biomarkers immunoassay. Anal Chem. 2019;91:14066.

Article  CAS  PubMed  Google Scholar 

Du Y, Xue JW, Sun X, Wu D, Liu XJ, Ju HX, Yang L, Wei Q. Oxygen vacancy-enhanced electrochemiluminescence sensing strategy using luminol thermally encapsulated in apoferritin as a transducer for biomarker immunoassay. Anal Chem. 2020;92:8472.

Article  CAS  PubMed  Google Scholar 

Zhang XH, Wu AP, Wang DX, Jiao YQ, Yan HJ, Jin CX, Xie Y, Tian CG. Fine-tune the electronic structure in Co-Mo based catalysts to give easily coupled HER and OER catalysts for effective water splitting. Appl Catal B. 2023;328: 122474.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif