Abarbanel, H. D. I., Gibb, L., Huerta, R., & Rabinovich, M. I. (2003). Biophysical model of synaptic plasticity dynamics. Biological Cybernetics, 89(3), 214–226. https://doi.org/10.1007/s00422-003-0422-x
Aberra, A. S., Wang, B., Grill, W. M., & Peterchev, A. V. (2020). Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons. Brain Stimulation, 13(1), 175–189. https://doi.org/10.1016/j.brs.2019.10.002
Azouz, R., & Gray, C. M. (2000). Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.130200797
Article PubMed PubMed Central Google Scholar
Beaulieu, C., & Colonnier, M. (1985). A laminar analysis of the number of round-asymmetrical and flat-symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat. Journal of Comparative Neurology. https://doi.org/10.1002/cne.902310206
Bersani, F. S., Minichino, A., Enticott, P. G., Mazzarini, L., Khan, N., Antonacci, G., et al. (2013). Deep transcranial magnetic stimulation as a treatment for psychiatric disorders: A comprehensive review. European Psychiatry. https://doi.org/10.1016/j.eurpsy.2012.02.006
Bi, G. Q., & Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience. https://doi.org/10.1523/jneurosci.18-24-10464.1998
Chadderdon, G. L., Neymotin, S. A., Kerr, C. C., & Lytton, W. W. (2012). Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex. PLoS ONE, 7(10), e47251. https://doi.org/10.1371/journal.pone.0047251
Article CAS PubMed PubMed Central Google Scholar
Chan, S., & Bota, R. (2019). Personalized TMS: Role of RNA genotyping. Mental Illness. https://doi.org/10.1108/MIJ-10-2019-0004
Article PubMed PubMed Central Google Scholar
Chervyakov, A. V., Chernyavsky, A. Y., Sinitsyn, D. O., & Piradov, M. A. (2015). Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2015.00303
Article PubMed PubMed Central Google Scholar
Di Lazzaro, V., Pilato, F., Dileone, M., Profice, P., Oliviero, A., Mazzone, P., et al. (2008). The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex. Journal of Physiology, 586(16), 3871–3879. https://doi.org/10.1113/jphysiol.2008.152736
Article CAS PubMed PubMed Central Google Scholar
Dura-Bernal, S., Suter, B. A., Gleeson, P., Cantarelli, M., Quintana, A., Rodriguez, F., et al. (2019). NetPyNE, a tool for data-driven multiscale modeling of brain circuits. eLife. https://doi.org/10.7554/eLife.44494
Article PubMed PubMed Central Google Scholar
Elstrott, J., Clancy, K. B., Jafri, H., Akimenko, I., & Feldman, D. E. (2014). Cellular mechanisms for response heterogeneity among L2/3 pyramidal cells in whisker somatosensory cortex. Journal of Neurophysiology. https://doi.org/10.1152/jn.00848.2013
Article PubMed PubMed Central Google Scholar
Hallett, M. (2007). Transcranial magnetic stimulation: A primer. Neuron, 55(2), 187–199. https://doi.org/10.1016/j.neuron.2007.06.026
Article CAS PubMed Google Scholar
Hamada, M., Murase, N., Hasan, A., Balaratnam, M., & Rothwell, J. C. (2013). The role of interneuron networks in driving human motor cortical plasticity. Cerebral Cortex. https://doi.org/10.1093/cercor/bhs147
Hanlon, C. A., & McCalley, D. M. (2022). Sex/Gender as a factor that influences transcranial magnetic stimulation treatment outcome: Three potential biological explanations. Frontiers in Psychiatry. https://doi.org/10.3389/fpsyt.2022.869070
Article PubMed PubMed Central Google Scholar
Huang, C. C., Wei, I. H., Chou, Y. H., & Su, T. P. (2008). Effect of age, gender, menopausal status, and ovarian hormonal level on rTMS in treatment-resistant depression. Psychoneuroendocrinology. https://doi.org/10.1016/j.psyneuen.2008.03.006
Huang, Y. Z., Edwards, M. J., Rounis, E., Bhatia, K. P., & Rothwell, J. C. (2005). Theta burst stimulation of the human motor cortex. Neuron, 45(2), 201–206. https://doi.org/10.1016/j.neuron.2004.12.033
Article CAS PubMed Google Scholar
Huang, Y. Z., Rothwell, J. C., Chen, R. S., Lu, C. S., & Chuang, W. L. (2011). The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clinical Neurophysiology, 122(5), 1011–1018. https://doi.org/10.1016/j.clinph.2010.08.016
Article PubMed PubMed Central Google Scholar
Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A., & Hudspeth, A. J. (2012). Principles of neural science (5th ed.). McGraw-Hill Education.
Lenz, M., Galanis, C., Müller-Dahlhaus, F., Opitz, A., Wierenga, C. J., Szabó, G., et al. (2016). Repetitive magnetic stimulation induces plasticity of inhibitory synapses. Nature Communications. https://doi.org/10.1038/ncomms10020
Article PubMed PubMed Central Google Scholar
Lenz, M., Platschek, S., Priesemann, V., Becker, D., Willems, L. M., Ziemann, U., et al. (2015). Repetitive magnetic stimulation induces plasticity of excitatory postsynapses on proximal dendrites of cultured mouse CA1 pyramidal neurons. Brain Structure and Function, 220(6), 3323–3337. https://doi.org/10.1007/s00429-014-0859-9
Article CAS PubMed Google Scholar
Miniussi, C., Ruzzoli, M., & Walsh, V. (2010). The mechanism of transcranial magnetic stimulation in cognition. Cortex. https://doi.org/10.1016/j.cortex.2009.03.004
MVF. (2022). A-computational-model-for-TBS-effects. https://github.com/MVF-hub/A-computational-model-for-TBS-effects. Accessed 27 July 2024.
Pitcher, D., Parkin, B., & Walsh, V. (2021). Transcranial magnetic stimulation and the understanding of behavior. Annual Review of Psychology, 72, 97–121. https://doi.org/10.1146/annurev-psych-081120-013144
Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., Bal, T., Frégnac, Y., et al. (2008). Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biological Cybernetics, 99(4–5), 427–441. https://doi.org/10.1007/s00422-008-0263-8
Ridding, M. C., & Ziemann, U. (2010). Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. Journal of Physiology. https://doi.org/10.1113/jphysiol.2010.190314
Article PubMed PubMed Central Google Scholar
Rounis, E., & Huang, Y. Z. (2020). Theta burst stimulation in humans: A need for better understanding effects of brain stimulation in health and disease. Experimental Brain Research, 238(7–8), 1707–1714. https://doi.org/10.1007/s00221-020-05880-1
Rusu, C. V., Murakami, M., Ziemann, U., & Triesch, J. (2014). A model of TMS-induced I-waves in motor cortex. Brain Stimulation, 7(3), 401–414. https://doi.org/10.1016/j.brs.2014.02.009
Sasaki, T., Kodama, S., Togashi, N., Shirota, Y., Sugiyama, Y., Tokushige, S., ichi, et al. (2018). The intensity of continuous theta burst stimulation, but not the waveform used to elicit motor evoked potentials, influences its outcome in the human motor cortex. Brain Stimulation, 11(2), 400–410. https://doi.org/10.1016/j.brs.2017.12.003
Schaworonkow, N., & Triesch, J. (2018a). Ongoing brain rhythms shape I-wave properties in a computational model. Brain Stimulation. https://doi.org/10.1016/j.brs.2018.03.010
Schaworonkow, N., & Triesch, J. (2018b). Ongoing brain rhythms shape I-wave properties in a computational model. Brain Stimulation, 11(4), 828–838.
留言 (0)