A computational model elucidating mechanisms and variability in theta burst stimulation responses

Abarbanel, H. D. I., Gibb, L., Huerta, R., & Rabinovich, M. I. (2003). Biophysical model of synaptic plasticity dynamics. Biological Cybernetics, 89(3), 214–226. https://doi.org/10.1007/s00422-003-0422-x

Article  PubMed  Google Scholar 

Aberra, A. S., Wang, B., Grill, W. M., & Peterchev, A. V. (2020). Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons. Brain Stimulation, 13(1), 175–189. https://doi.org/10.1016/j.brs.2019.10.002

Article  PubMed  Google Scholar 

Azouz, R., & Gray, C. M. (2000). Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.130200797

Article  PubMed  PubMed Central  Google Scholar 

Beaulieu, C., & Colonnier, M. (1985). A laminar analysis of the number of round-asymmetrical and flat-symmetrical synapses on spines, dendritic trunks, and cell bodies in area 17 of the cat. Journal of Comparative Neurology. https://doi.org/10.1002/cne.902310206

Article  PubMed  Google Scholar 

Bersani, F. S., Minichino, A., Enticott, P. G., Mazzarini, L., Khan, N., Antonacci, G., et al. (2013). Deep transcranial magnetic stimulation as a treatment for psychiatric disorders: A comprehensive review. European Psychiatry. https://doi.org/10.1016/j.eurpsy.2012.02.006

Article  PubMed  Google Scholar 

Bi, G. Q., & Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience. https://doi.org/10.1523/jneurosci.18-24-10464.1998

Article  PubMed  Google Scholar 

Chadderdon, G. L., Neymotin, S. A., Kerr, C. C., & Lytton, W. W. (2012). Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex. PLoS ONE, 7(10), e47251. https://doi.org/10.1371/journal.pone.0047251

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan, S., & Bota, R. (2019). Personalized TMS: Role of RNA genotyping. Mental Illness. https://doi.org/10.1108/MIJ-10-2019-0004

Article  PubMed  PubMed Central  Google Scholar 

Chervyakov, A. V., Chernyavsky, A. Y., Sinitsyn, D. O., & Piradov, M. A. (2015). Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2015.00303

Article  PubMed  PubMed Central  Google Scholar 

Di Lazzaro, V., Pilato, F., Dileone, M., Profice, P., Oliviero, A., Mazzone, P., et al. (2008). The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex. Journal of Physiology, 586(16), 3871–3879. https://doi.org/10.1113/jphysiol.2008.152736

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dura-Bernal, S., Suter, B. A., Gleeson, P., Cantarelli, M., Quintana, A., Rodriguez, F., et al. (2019). NetPyNE, a tool for data-driven multiscale modeling of brain circuits. eLife. https://doi.org/10.7554/eLife.44494

Article  PubMed  PubMed Central  Google Scholar 

Elstrott, J., Clancy, K. B., Jafri, H., Akimenko, I., & Feldman, D. E. (2014). Cellular mechanisms for response heterogeneity among L2/3 pyramidal cells in whisker somatosensory cortex. Journal of Neurophysiology. https://doi.org/10.1152/jn.00848.2013

Article  PubMed  PubMed Central  Google Scholar 

Hallett, M. (2007). Transcranial magnetic stimulation: A primer. Neuron, 55(2), 187–199. https://doi.org/10.1016/j.neuron.2007.06.026

Article  CAS  PubMed  Google Scholar 

Hamada, M., Murase, N., Hasan, A., Balaratnam, M., & Rothwell, J. C. (2013). The role of interneuron networks in driving human motor cortical plasticity. Cerebral Cortex. https://doi.org/10.1093/cercor/bhs147

Article  PubMed  Google Scholar 

Hanlon, C. A., & McCalley, D. M. (2022). Sex/Gender as a factor that influences transcranial magnetic stimulation treatment outcome: Three potential biological explanations. Frontiers in Psychiatry. https://doi.org/10.3389/fpsyt.2022.869070

Article  PubMed  PubMed Central  Google Scholar 

Huang, C. C., Wei, I. H., Chou, Y. H., & Su, T. P. (2008). Effect of age, gender, menopausal status, and ovarian hormonal level on rTMS in treatment-resistant depression. Psychoneuroendocrinology. https://doi.org/10.1016/j.psyneuen.2008.03.006

Article  PubMed  Google Scholar 

Huang, Y. Z., Edwards, M. J., Rounis, E., Bhatia, K. P., & Rothwell, J. C. (2005). Theta burst stimulation of the human motor cortex. Neuron, 45(2), 201–206. https://doi.org/10.1016/j.neuron.2004.12.033

Article  CAS  PubMed  Google Scholar 

Huang, Y. Z., Rothwell, J. C., Chen, R. S., Lu, C. S., & Chuang, W. L. (2011). The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clinical Neurophysiology, 122(5), 1011–1018. https://doi.org/10.1016/j.clinph.2010.08.016

Article  PubMed  PubMed Central  Google Scholar 

Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A., & Hudspeth, A. J. (2012). Principles of neural science (5th ed.). McGraw-Hill Education.

Lenz, M., Galanis, C., Müller-Dahlhaus, F., Opitz, A., Wierenga, C. J., Szabó, G., et al. (2016). Repetitive magnetic stimulation induces plasticity of inhibitory synapses. Nature Communications. https://doi.org/10.1038/ncomms10020

Article  PubMed  PubMed Central  Google Scholar 

Lenz, M., Platschek, S., Priesemann, V., Becker, D., Willems, L. M., Ziemann, U., et al. (2015). Repetitive magnetic stimulation induces plasticity of excitatory postsynapses on proximal dendrites of cultured mouse CA1 pyramidal neurons. Brain Structure and Function, 220(6), 3323–3337. https://doi.org/10.1007/s00429-014-0859-9

Article  CAS  PubMed  Google Scholar 

Miniussi, C., Ruzzoli, M., & Walsh, V. (2010). The mechanism of transcranial magnetic stimulation in cognition. Cortex. https://doi.org/10.1016/j.cortex.2009.03.004

Article  PubMed  Google Scholar 

MVF. (2022). A-computational-model-for-TBS-effects. https://github.com/MVF-hub/A-computational-model-for-TBS-effects. Accessed 27 July 2024.

Pitcher, D., Parkin, B., & Walsh, V. (2021). Transcranial magnetic stimulation and the understanding of behavior. Annual Review of Psychology, 72, 97–121. https://doi.org/10.1146/annurev-psych-081120-013144

Article  PubMed  Google Scholar 

Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., Bal, T., Frégnac, Y., et al. (2008). Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biological Cybernetics, 99(4–5), 427–441. https://doi.org/10.1007/s00422-008-0263-8

Article  PubMed  Google Scholar 

Ridding, M. C., & Ziemann, U. (2010). Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. Journal of Physiology. https://doi.org/10.1113/jphysiol.2010.190314

Article  PubMed  PubMed Central  Google Scholar 

Rounis, E., & Huang, Y. Z. (2020). Theta burst stimulation in humans: A need for better understanding effects of brain stimulation in health and disease. Experimental Brain Research, 238(7–8), 1707–1714. https://doi.org/10.1007/s00221-020-05880-1

Article  PubMed  Google Scholar 

Rusu, C. V., Murakami, M., Ziemann, U., & Triesch, J. (2014). A model of TMS-induced I-waves in motor cortex. Brain Stimulation, 7(3), 401–414. https://doi.org/10.1016/j.brs.2014.02.009

Article  PubMed  Google Scholar 

Sasaki, T., Kodama, S., Togashi, N., Shirota, Y., Sugiyama, Y., Tokushige, S., ichi, et al. (2018). The intensity of continuous theta burst stimulation, but not the waveform used to elicit motor evoked potentials, influences its outcome in the human motor cortex. Brain Stimulation, 11(2), 400–410. https://doi.org/10.1016/j.brs.2017.12.003

Article  PubMed  Google Scholar 

Schaworonkow, N., & Triesch, J. (2018a). Ongoing brain rhythms shape I-wave properties in a computational model. Brain Stimulation. https://doi.org/10.1016/j.brs.2018.03.010

Article  PubMed  Google Scholar 

Schaworonkow, N., & Triesch, J. (2018b). Ongoing brain rhythms shape I-wave properties in a computational model. Brain Stimulation, 11(4), 828–838.

留言 (0)

沒有登入
gif