Sharma, L. Osteoarthritis of the knee. N. Engl. J. Med. 384, 51–59 (2021).
Article CAS PubMed Google Scholar
Glyn-Jones, S. et al. Osteoarthritis. Lancet 386, 376–387 (2015).
Article CAS PubMed Google Scholar
Martel-Pelletier, J. et al. Osteoarthritis. Nat. Rev. Dis. Prim. 2, 16072 (2016).
Liu, C. J. The role of ADAMTS-7 and ADAMTS-12 in the pathogenesis of arthritis. Nat. Clin. Pract. Rheumatol. 5, 38–45 (2009).
Article PubMed PubMed Central Google Scholar
Lin, E. A. & Liu, C. J. The role of ADAMTSs in arthritis. Protein Cell 1, 33–47 (2010).
Article CAS PubMed PubMed Central Google Scholar
Fu, K., Robbins, S. R. & McDougall, J. J. Osteoarthritis: the genesis of pain. Rheumatology 57, iv43–iv50 (2018).
Article CAS PubMed Google Scholar
Huang, G., Jian, J. & Liu, C. J. Progranulinopathy: a diverse realm of disorders linked to progranulin imbalances. Cytokine Growth Factor. Rev. 76, 142–159 (2024).
Article CAS PubMed Google Scholar
Williams, A., Wang, E. C., Thurner, L. & Liu, C. J. Review: novel insights into tumor necrosis factor receptor, death receptor 3, and progranulin pathways in arthritis and bone remodeling. Arthritis Rheumatol. 68, 2845–2856 (2016).
Article CAS PubMed PubMed Central Google Scholar
Liu-Bryan, R. & Terkeltaub, R. Emerging regulators of the inflammatory process in osteoarthritis. Nat. Rev. Rheumatol. 11, 35–44 (2015).
Article CAS PubMed Google Scholar
Tang, W. et al. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 332, 478–484 (2011).
Article CAS PubMed PubMed Central Google Scholar
Burr, D. B. & Gallant, M. A. Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol. 8, 665–673 (2012).
Article CAS PubMed Google Scholar
Chen, D. et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res. 5, 16044 (2017).
Article CAS PubMed PubMed Central Google Scholar
Steinecker-Frohnwieser, B. et al. Activation of the mechanosensitive ion channels Piezo1 and TRPV4 in primary human healthy and osteoarthritic chondrocytes exhibits ion channel crosstalk and modulates gene expression. Int. J. Mol. Sci. 24, 7868 (2023).
Article CAS PubMed PubMed Central Google Scholar
Zhang, W. et al. OARSI recommendations for the management of hip and knee osteoarthritis: part III: changes in evidence following systematic cumulative update of research published through January 2009. Osteoarthritis Cartilage 18, 476–499 (2010).
Article CAS PubMed Google Scholar
Kasianowicz, J. J. Introduction to ion channels and disease. Chem. Rev. 112, 6215–6217 (2012).
Article CAS PubMed Google Scholar
Savadipour, A., Nims, R. J., Katz, D. B. & Guilak, F. Regulation of chondrocyte biosynthetic activity by dynamic hydrostatic pressure: the role of TRP channels. Connect. Tissue Res. 63, 69–81 (2022).
Article CAS PubMed Google Scholar
Gilchrist, C. L. et al. TRPV4-mediated calcium signaling in mesenchymal stem cells regulates aligned collagen matrix formation and vinculin tension. Proc. Natl Acad. Sci. USA 116, 1992–1997 (2019).
Article CAS PubMed PubMed Central Google Scholar
Lewis, R. et al. The role of the membrane potential in chondrocyte volume regulation. J. Cell. Physiol. 226, 2979–2986 (2011).
Article CAS PubMed PubMed Central Google Scholar
Willard, V. P. et al. Transient receptor potential vanilloid 4 as a regulator of induced pluripotent stem cell chondrogenesis. Stem Cell 39, 1447–1456 (2021).
Lamande, S. R. et al. Mutations in TRPV4 cause an inherited arthropathy of hands and feet. Nat. Genet. 43, 1142–1146 (2011).
Article CAS PubMed Google Scholar
Sorge, R. E. et al. Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity. Nat. Med. 18, 595–599 (2012).
Article CAS PubMed PubMed Central Google Scholar
Kelly, S. et al. Increased function of pronociceptive TRPV1 at the level of the joint in a rat model of osteoarthritis pain. Ann. Rheum. Dis. 74, 252–259 (2015).
Article CAS PubMed Google Scholar
Obeidat, A. M. et al. Piezo2 expressing nociceptors mediate mechanical sensitization in experimental osteoarthritis. Nat. Commun. 14, 2479 (2023).
Article CAS PubMed PubMed Central Google Scholar
Savadipour, A. et al. Membrane stretch as the mechanism of activation of PIEZO1 ion channels in chondrocytes. Proc. Natl Acad. Sci. USA 120, e2221958120 (2023).
Article CAS PubMed PubMed Central Google Scholar
Nakamoto, H. et al. Involvement of transient receptor potential vanilloid channel 2 in the induction of lubricin and suppression of ectopic endochondral ossification in mouse articular cartilage. Arthritis Rheumatol. 73, 1441–1450 (2021).
Article CAS PubMed Google Scholar
Fu, W. et al. Nav1.7 as a chondrocyte regulator and therapeutic target for osteoarthritis. Nature 625, 557–565 (2024).
Article CAS PubMed PubMed Central Google Scholar
Bertram, K. L., Banderali, U., Tailor, P. & Krawetz, R. J. Ion channel expression and function in normal and osteoarthritic human synovial fluid progenitor cells. Channels 10, 148–157 (2016).
Matta, C. et al. Ion channels involved in inflammation and pain in osteoarthritis and related musculoskeletal disorders. Am. J. Physiol. Cell Physiol. 325, C257–C271 (2023).
Article CAS PubMed Google Scholar
Xu, B. et al. Excessive mechanical stress induces chondrocyte apoptosis through TRPV4 in an anterior cruciate ligament-transected rat osteoarthritis model. Life Sci. 228, 158–166 (2019).
Article CAS PubMed Google Scholar
Ohtsuki, T. et al. Mechanical strain attenuates cytokine-induced ADAMTS9 expression via transient receptor potential vanilloid type 1. Exp. Cell Res. 383, 111556 (2019).
Article CAS PubMed Google Scholar
Brierley, S. M. et al. Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 134, 2059–2069 (2008).
留言 (0)