Arimoto, K., Hishiki, T., Kiyonari, H., Abe, T., Cheng, C., Yan, M., Fan, J. B., Futakuchi, M., Tsuda, H., Murakami, Y., Suzuki, H., Zhang, D. E., & Shimotohno, K. (2015). Murine Herc6 plays a critical role in protein ISGylation in vivo and has an ISGylation-independent function in seminal vesicles. Journal of Interferon and Cytokine Research, 35(5), 351–358. https://doi.org/10.1089/jir.2014.0113
Article CAS PubMed PubMed Central Google Scholar
Ayub, S. G., & Kaul, D. (2017). miR-2909 regulates ISGylation system via STAT1 signalling through negative regulation of SOCS3 in prostate cancer. Andrology, 5(4), 790–797.
Article CAS PubMed Google Scholar
Bhargava, S., Patil, V., Mahalingam, K., & Somasundaram, K. (2017). Elucidation of the genetic and epigenetic landscape alterations in RNA binding proteins in glioblastoma. Oncotarget, 8(10), 16650–16668. https://doi.org/10.18632/oncotarget.14287
Burks, J., Fleury, A., Livingston, S., & Smith, J. P. (2019). ISG15 pathway knockdown reverses pancreatic cancer cell transformation and decreases murine pancreatic tumor growth via downregulation of PDL-1 expression. Cancer Immunology, Immunotherapy, 68(12), 2029–2039. https://doi.org/10.1007/s00262-019-02422-9
Article CAS PubMed PubMed Central Google Scholar
Burks, J., Reed, R. E., & Desai, S. D. (2014). ISGylation governs the oncogenic function of Ki-Ras in breast cancer. Oncogene, 33(6), 794–803.
Article CAS PubMed Google Scholar
Cao, S., Li, N., & Liao, X. (2021). miR-362-3p acts as a tumor suppressor by targeting SERBP1 in ovarian cancer. Journal of Ovarian Research, 14(1), 23. https://doi.org/10.1186/s13048-020-00760-2
Article CAS PubMed PubMed Central Google Scholar
Dai, Y., Yu, T., Yu, C., Lu, T., Zhou, Lu., Cheng, C., & Ni, H. (2022). ISG15 enhances glioma cell stemness by promoting Oct4 protein stability. Environmental Toxicology, 37(9), 2133–2142.
Article CAS PubMed Google Scholar
Fan, J.-B., Miyauchi-Ishida, S., Arimoto, K.-I., Liu, D., Yan, M., Liu, C.-W., Győrffy, B., & Zhang, D.-E. (2015). Type I IFN induces protein ISGylation to enhance cytokine expression and augments colonic inflammation. Proceedings of the National Academy of Sciences., 112(46), 14313–14318.
Hermann, M. R., Jakobson, M., Colo, G. P., Rognoni, E., Jakobson, M., Kupatt, C., Posern, G., & Fassler, R. (2016). Integrins synergise to induce expression of the MRTF-A-SRF target gene ISG15 for promoting cancer cell invasion. Journal of Cell Science, 129(7), 1391–1403. https://doi.org/10.1242/jcs.177592
Article CAS PubMed Google Scholar
Huibregtse, J. M., Scheffner, M., Beaudenon, S., & Howley, P. M. (1995). A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proceedings of the National Academy of Sciences, 92(11), 5249. https://doi.org/10.1073/pnas.92.11.5249-b
Jin, J., Meng, X., Huo, Y., & Deng, H. (2021). Induced TRIM21 ISGylation by IFN-beta enhances p62 ubiquitination to prevent its autophagosome targeting. Cell Death & Disease, 12(7), 697. https://doi.org/10.1038/s41419-021-03989-x
Kosti, A., de Araujo, P. R., Li, W. Q., Guardia, G. D. A., Chiou, J., Yi, C., Ray, D., Meliso, F., Li, Y. M., Delambre, T., Qiao, M., Burns, S. S., Lorbeer, F. K., Georgi, F., Flosbach, M., Klinnert, S., Jenseit, A., Lei, X., Sandoval, C. R., et al. (2020). The RNA-binding protein SERBP1 functions as a novel oncogenic factor in glioblastoma by bridging cancer metabolism and epigenetic regulation. Genome Biology, 21(1), 195. https://doi.org/10.1186/s13059-020-02115-y
Article CAS PubMed PubMed Central Google Scholar
Li, C., Wang, J., Zhang, H., Zhu, M., Chen, F., Hu, Y., Liu, H., & Zhu, H. (2014). Interferon-stimulated gene 15 (ISG15) is a trigger for tumorigenesis and metastasis of hepatocellular carcinoma. Oncotarget, 5(18), 8429–8441. https://doi.org/10.18632/oncotarget.2316
Article PubMed PubMed Central Google Scholar
Liu, C., Li, L., Hou, G., Lu, Y., Gao, M., & Zhang, L. (2022). HERC5/IFI16/p53 signaling mediates breast cancer cell proliferation and migration. Life Sciences, 303, 120692. https://doi.org/10.1016/j.lfs.2022.120692
Article CAS PubMed Google Scholar
Lo, P.-K., Yao, Y., Lee, J. S., Zhang, Y., Huang, W., Kane, M. A., & Zhou, Q. (2018). LIPG signaling promotes tumor initiation and metastasis of human basal-like triple-negative breast cancer. eLife, 7, e31334.
Article PubMed PubMed Central Google Scholar
Mirzalieva, O., Juncker, M., Schwartzenburg, J., & Desai, S. (2022a). ISG15 and ISGylation in human diseases. Cells. https://doi.org/10.3390/cells11030538
Article PubMed PubMed Central Google Scholar
Mirzalieva, O., Juncker, M., Schwartzenburg, J., & Desai, S. (2022b). ISG15 and ISGylation in human diseases. Cells, 11(3), 538.
Article CAS PubMed PubMed Central Google Scholar
Mustachio, L. M., Kawakami, M., Lu, Y., Rodriguez-Canales, J., Mino, B., Behrens, C., Wistuba, I., Bota-Rabassedas, N., Yu, J., & Lee, J. J. (2017). The ISG15-specific protease USP18 regulates stability of PTEN. Oncotarget, 8(1), 3.
Mustachio, L. M., Lu, Y., Kawakami, M., Roszik, J., Freemantle, S. J., Liu, Xi., & Dmitrovsky, E. (2018). Evidence for the ISG15-specific deubiquitinase USP18 as an antineoplastic target. Cancer Research, 78(3), 587–592.
Article CAS PubMed PubMed Central Google Scholar
Park, S.-Y., Yoon, S., Kim, H., & Kim, K. K. (2016). 90K glycoprotein promotes degradation of mutant β-catenin lacking the ISGylation or phosphorylation sites in the N-terminus. Neoplasia, 18(10), 618–625.
Article CAS PubMed PubMed Central Google Scholar
Qin, Y., Meng, X., Wang, M., Liang, W., Xu, R., Chen, J., Song, H., Fu, Y., Li, J., Gao, C., Jia, M., Zhao, C., & Zhao, W. (2023). Posttranslational ISGylation of NLRP3 by HERC enzymes facilitates inflammasome activation in models of inflammation. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI161935
Article PubMed PubMed Central Google Scholar
Qu, T., Zhang, W., Yan, C., Ren, D., Wang, Y., Guo, Y., Guo, Q., Wang, J., Liu, L., Han, L., Li, L., Huang, Q., Cao, L., Ye, Z., Zhang, B., Zhao, Q., & Cao, W. (2023). ISG15 targets glycosylated PD-L1 and promotes its degradation to enhance antitumor immune effects in lung adenocarcinoma. Journal of Translational Medicine, 21(1), 341. https://doi.org/10.1186/s12967-023-04135-1
Article CAS PubMed PubMed Central Google Scholar
Sanchez-Tena, S., Cubillos-Rojas, M., Schneider, T., & Rosa, J. L. (2016). Functional and pathological relevance of HERC family proteins: A decade later. Cellular and Molecular Life Sciences, 73(10), 1955–1968. https://doi.org/10.1007/s00018-016-2139-8
Article CAS PubMed PubMed Central Google Scholar
Shan, B., Qu, S., Lv, S., Fan, D., & Wang, S. (2022). YY1-induced long non-coding RNA small nucleolar RNA host gene 8 promotes the tumorigenesis of melanoma via the microRNA-656-3p/SERPINE1 mRNA binding protein 1 axis. Bioengineered, 13(3), 4832–4843. https://doi.org/10.1080/21655979.2022.2034586
Article CAS PubMed PubMed Central Google Scholar
Shetty, S., Hofstetter, J., Battaglioni, S., Ritz, D., & Hall, M. N. (2023). TORC1 phosphorylates and inhibits the ribosome preservation factor Stm1 to activate dormant ribosomes. The EMBO Journal, 42(5), e112344. https://doi.org/10.15252/embj.2022112344
Article CAS PubMed PubMed Central Google Scholar
Tan, A. C., Ashley, D. M., López, G. Y., Malinzak, M., Friedman, H. S., & Khasraw, M. (2020). Management of glioblastoma: State of the art and future directions. J CA: A Cancer Journal for Clinicians, 70(4), 299–312.
Tecalco-Cruz, A. C., Velasco-Loyden, G., Robles-Villarruel, L., Cortes-González, C. C., Zepeda-Cervantes, J., Pineda, B., & de Sánchez, V. C. (2022). Interferon-stimulated gene 15 and ISGylation are upregulated in glioblastoma. Biochemical and Biophysical Research Communications, 621, 144–150.
留言 (0)