Differential Expression of GABA Receptor-Related Genes in Alzheimer’s Disease and the Positive Regulatory Role of Aerobic Exercise-From Genetic Screening to D-gal-induced AD-like Pathology Model

Ali, A. B., Islam, A., & Constanti, A. (2023). The fate of interneurons, GABAA receptor sub-types and perineuronal nets in Alzheimer’s disease. Brain Pathology (Zurich, Switzerland), 33(1), e13129. https://doi.org/10.1111/bpa.13129

Article  CAS  PubMed  Google Scholar 

Andersen, J. V., Schousboe, A., & Verkhratsky, A. (2022). Astrocyte energy and neurotransmitter metabolism in Alzheimer’s disease: Integration of the glutamate/GABA-glutamine cycle. Progress in Neurobiology, 217, 102331. https://doi.org/10.1016/j.pneurobio.2022.102331

Article  CAS  PubMed  Google Scholar 

Bak, L. K., Schousboe, A., & Waagepetersen, H. S. (2006). The glutamate/GABA-glutamine cycle: Aspects of transport, neurotransmitter homeostasis and ammonia transfer. Journal of Neurochemistry, 98(3), 641–653. https://doi.org/10.1111/j.1471-4159.2006.03913.x

Article  CAS  PubMed  Google Scholar 

Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K. A., Phillippy, K. H., Sherman, P. M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C. L., Serova, N., Davis, S., & Soboleva, A. (2013). NCBI GEO: archive for functional genomics data sets--update. Nucleic acids research, 41(Database issue), D991–D995. https://doi.org/10.1093/nar/gks1193

Bedford, T. G., Tipton, C. M., Wilson, N. C., Oppliger, R. A., & Gisolfi, C. V. (1979). Maximum oxygen consumption of rats and its changes with various experimental procedures. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 47(6), 1278–1283. https://doi.org/10.1152/jappl.1979.47.6.1278

Article  CAS  PubMed  Google Scholar 

Bie, B., Wu, J., Lin, F., Naguib, M., & Xu, J. (2022). Suppression of hippocampal GABAergic transmission impairs memory in rodent models of Alzheimer’s disease. European Journal of Pharmacology, 917, 174771. https://doi.org/10.1016/j.ejphar.2022.174771

Article  CAS  PubMed  Google Scholar 

Cai, Y., Liu, J., Wang, B., Sun, M., & Yang, H. (2022). Microglia in the neuroinflammatory pathogenesis of Alzheimer’s disease and related therapeutic targets. Frontiers in Immunology, 13, 856376. https://doi.org/10.3389/fimmu.2022.856376

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carello-Collar, G., Bellaver, B., Ferreira, P. C. L., Ferrari-Souza, J. P., Ramos, V. G., Therriault, J., Tissot, C., De Bastiani, M. A., Soares, C., Pascoal, T. A., Rosa-Neto, P., Souza, D. O., & Zimmer, E. R. (2023). The GABAergic system in Alzheimer’s disease: A systematic review with meta-analysis. Molecular Psychiatry, 28(12), 5025–5036. https://doi.org/10.1038/s41380-023-02140-w

Article  CAS  PubMed  Google Scholar 

Endo, F., Kasai, A., Soto, J. S., Yu, X., Qu, Z., Hashimoto, H., Gradinaru, V., Kawaguchi, R., & Khakh, B. S. (2022). Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science (New York, N.Y.), 378(6619), eadc9020. https://doi.org/10.1126/science.adc9020

Enomoto, T., Tse, M. T., & Floresco, S. B. (2011). Reducing prefrontal gamma-aminobutyric acid activity induces cognitive, behavioral, and dopaminergic abnormalities that resemble schizophrenia. Biological Psychiatry, 69(5), 432–441. https://doi.org/10.1016/j.biopsych.2010.09.038

Article  CAS  PubMed  Google Scholar 

Gao, J., Zhou, R., You, X., Luo, F., He, H., Chang, X., Zhu, L., Ding, X., & Yan, T. (2016). Salidroside suppresses inflammation in a D-galactose-induced rat model of Alzheimer’s disease via SIRT1/NF-κB pathway. Metabolic Brain Disease, 31(4), 771–778. https://doi.org/10.1007/s11011-016-9813-2

Article  CAS  PubMed  Google Scholar 

Guillamón-Vivancos, T., Gómez-Pinedo, U., & Matías-Guiu, J. (2015). Astrocytes in neurodegenerative diseases (I): Function and molecular description. Neurologia (Barcelona, Spain), 30(2), 119–129. https://doi.org/10.1016/j.nrl.2012.12.007

Article  PubMed  Google Scholar 

Guo, N., McDermott, K. D., Shih, Y. T., Zanga, H., Ghosh, D., Herber, C., Meara, W. R., Coleman, J., Zagouras, A., Wong, L. P., Sadreyev, R., Gonçalves, J. T., & Sahay, A. (2022). Transcriptional regulation of neural stem cell expansion in the adult hippocampus. eLife, 11, e72195. https://doi.org/10.7554/eLife.72195

Ishibashi, M., Egawa, K., & Fukuda, A. (2019). Diverse actions of astrocytes in GABAergic signaling. International Journal of Molecular Sciences, 20(12), 2964. https://doi.org/10.3390/ijms20122964

Article  CAS  PubMed  PubMed Central  Google Scholar 

Janocko, N. J., Brodersen, K. A., Soto-Ortolaza, A. I., Ross, O. A., Liesinger, A. M., Duara, R., Graff-Radford, N. R., Dickson, D. W., & Murray, M. E. (2012). Neuropathologically defined subtypes of Alzheimer’s disease differ significantly from neurofibrillary tangle-predominant dementia. Acta Neuropathologica, 124(5), 681–692. https://doi.org/10.1007/s00401-012-1044-y

Article  PubMed  PubMed Central  Google Scholar 

Jia, Y., Wang, X., Chen, Y., Qiu, W., Ge, W., & Ma, C. (2021). Proteomic and transcriptomic analyses reveal pathological changes in the entorhinal cortex region that correlate well with dysregulation of ion transport in patients with Alzheimer’s disease. Molecular Neurobiology, 58(8), 4007–4027. https://doi.org/10.1007/s12035-021-02356-3

Article  CAS  PubMed  Google Scholar 

Jiménez-Balado, J., & Eich, T. S. (2021). GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer’s disease. Seminars in Cell & Developmental Biology, 116, 146–159. https://doi.org/10.1016/j.semcdb.2021.01.005

Article  CAS  Google Scholar 

Khan, S., Barve, K. H., & Kumar, M. S. (2020). Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease. Current Neuropharmacology, 18(11), 1106–1125. https://doi.org/10.2174/1570159X18666200528142429

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, J., Liu, W., Sun, W., Rao, X., Chen, X., & Yu, L. (2023). A study on autophagy related biomarkers in Alzheimer’s disease based on bioinformatics. Cellular and Molecular Neurobiology, 43(7), 3693–3703. https://doi.org/10.1007/s10571-023-01379-9

Article  CAS  PubMed  Google Scholar 

Li, X., Guo, S., Liu, K., Zhang, C., Chang, H., Yang, W., Rong, S., Hu, Q., Cui, J., Wang, F., & Sun, T. (2020). GABRG2 deletion linked to genetic epilepsy with febrile seizures plus affects the expression of GABAA receptor subunits and other genes at different temperatures. Neuroscience, 438, 116–136. https://doi.org/10.1016/j.neuroscience.2020.04.049

Article  CAS  PubMed  Google Scholar 

Liu, M., Zhu, L., Guo, Y. J., Zhang, S. S., Jiang, L., Zhang, Y., Chao, F. L., & Tang, Y. (2023b). The effects of voluntary running exercise on the astrocytes of the medial prefrontal cortex in APP/PS1 mice. The Journal of Comparative Neurology, 531(11), 1147–1162. https://doi.org/10.1002/cne.25485

Article  PubMed  Google Scholar 

Liu, Y., Guo, W., & Hong, S. L. (2023a). Aerobic exercise mitigates hippocampal neuronal apoptosis by regulating DAPK1/CDKN2A/REDD1/FoXO1/FasL signaling pathway in D-galactose-induced aging mice. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 37(10), e23205. https://doi.org/10.1096/fj.202300847RR

Article  CAS  PubMed  Google Scholar 

Liu, Y., Meng, X. K., Shao, W. Z., Liu, Y. Q., Tang, C., Deng, S. S., Tang, C. F., Zheng, L., & Guo, W. (2024). miR-34a/TAN1/CREB axis engages in alleviating oligodendrocyte trophic factor-induced myelin repair function and astrocyte-dependent neuroinflammation in the early stages of Alzheimer’s disease: The anti-neurodegenerative effect of treadmill exercise. Neurochemical Research, 49(4), 1105–1120. https://doi.org/10.1007/s11064-024-04108-w

Article  CAS  PubMed  Google Scholar 

Luchetti, S., Huitinga, I., & Swaab, D. F. (2011). Neurosteroid and GABA-A receptor alterations in Alzheimer’s disease, Parkinson’s disease and multiple sclerosis. Neuroscience, 191, 6–21. https://doi.org/10.1016/j.neuroscience.2011.04.010

Article  CAS  PubMed  Google Scholar 

Pilipenko, V., Narbute, K., Amara, I., Trovato, A., Scuto, M., Pupure, J., Jansone, B., Poikans, J., Bisenieks, E., Klusa, V., & Calabrese, V. (2019). GABA-containing compound gammapyrone protects against brain impairments in Alzheimer’s disease model male rats and prevents mitochondrial dysfunction in cell culture. Journal of Neuroscience Research, 97(6), 708–726. https://doi.org/10.1002/jnr.24396

Article  CAS  PubMed  Google Scholar 

Ruan, Q., Hu, X., Ao, H., Ma, H., Gao, Z., Liu, F., Kong, D., Bao, Z., & Yu, Z. (2014). The neurovascular protective effects of huperzine A on D-galactose-induced inflammatory damage in the rat hippocampus. Gerontology, 60(5), 424–439. https://doi.org/10.1159/000358235

Article  CAS  PubMed  Google Scholar 

Sharma, P., Sharma, B. S., Raval, H., & Singh, V. (2023). Endocytosis of GABA receptor: Signaling in nervous system. Progress in Molecular Biology and Translational Science, 196, 125–139. https://doi.org/10.1016/bs.pmbts.2022.06.032

Article  CAS  PubMed  Google Scholar 

Wang, J., Zhou, C., Huang, Z., Ji, X., Cui, R., Kang, Y., Zhang, G., Wang, Y., & Zhang, T. (2024b). Repetitive transcranial magnetic stimulation-mediated neuroprotection in the 5xFAD mouse model of Alzheimer’s disease through GABRG2 and SNAP25 modulation. Molecular Neurobiology. https://doi.org/10.1007/s12035-024-04354-7

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif