Ali, A. B., Islam, A., & Constanti, A. (2023). The fate of interneurons, GABAA receptor sub-types and perineuronal nets in Alzheimer’s disease. Brain Pathology (Zurich, Switzerland), 33(1), e13129. https://doi.org/10.1111/bpa.13129
Article CAS PubMed Google Scholar
Andersen, J. V., Schousboe, A., & Verkhratsky, A. (2022). Astrocyte energy and neurotransmitter metabolism in Alzheimer’s disease: Integration of the glutamate/GABA-glutamine cycle. Progress in Neurobiology, 217, 102331. https://doi.org/10.1016/j.pneurobio.2022.102331
Article CAS PubMed Google Scholar
Bak, L. K., Schousboe, A., & Waagepetersen, H. S. (2006). The glutamate/GABA-glutamine cycle: Aspects of transport, neurotransmitter homeostasis and ammonia transfer. Journal of Neurochemistry, 98(3), 641–653. https://doi.org/10.1111/j.1471-4159.2006.03913.x
Article CAS PubMed Google Scholar
Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K. A., Phillippy, K. H., Sherman, P. M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C. L., Serova, N., Davis, S., & Soboleva, A. (2013). NCBI GEO: archive for functional genomics data sets--update. Nucleic acids research, 41(Database issue), D991–D995. https://doi.org/10.1093/nar/gks1193
Bedford, T. G., Tipton, C. M., Wilson, N. C., Oppliger, R. A., & Gisolfi, C. V. (1979). Maximum oxygen consumption of rats and its changes with various experimental procedures. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 47(6), 1278–1283. https://doi.org/10.1152/jappl.1979.47.6.1278
Article CAS PubMed Google Scholar
Bie, B., Wu, J., Lin, F., Naguib, M., & Xu, J. (2022). Suppression of hippocampal GABAergic transmission impairs memory in rodent models of Alzheimer’s disease. European Journal of Pharmacology, 917, 174771. https://doi.org/10.1016/j.ejphar.2022.174771
Article CAS PubMed Google Scholar
Cai, Y., Liu, J., Wang, B., Sun, M., & Yang, H. (2022). Microglia in the neuroinflammatory pathogenesis of Alzheimer’s disease and related therapeutic targets. Frontiers in Immunology, 13, 856376. https://doi.org/10.3389/fimmu.2022.856376
Article CAS PubMed PubMed Central Google Scholar
Carello-Collar, G., Bellaver, B., Ferreira, P. C. L., Ferrari-Souza, J. P., Ramos, V. G., Therriault, J., Tissot, C., De Bastiani, M. A., Soares, C., Pascoal, T. A., Rosa-Neto, P., Souza, D. O., & Zimmer, E. R. (2023). The GABAergic system in Alzheimer’s disease: A systematic review with meta-analysis. Molecular Psychiatry, 28(12), 5025–5036. https://doi.org/10.1038/s41380-023-02140-w
Article CAS PubMed Google Scholar
Endo, F., Kasai, A., Soto, J. S., Yu, X., Qu, Z., Hashimoto, H., Gradinaru, V., Kawaguchi, R., & Khakh, B. S. (2022). Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science (New York, N.Y.), 378(6619), eadc9020. https://doi.org/10.1126/science.adc9020
Enomoto, T., Tse, M. T., & Floresco, S. B. (2011). Reducing prefrontal gamma-aminobutyric acid activity induces cognitive, behavioral, and dopaminergic abnormalities that resemble schizophrenia. Biological Psychiatry, 69(5), 432–441. https://doi.org/10.1016/j.biopsych.2010.09.038
Article CAS PubMed Google Scholar
Gao, J., Zhou, R., You, X., Luo, F., He, H., Chang, X., Zhu, L., Ding, X., & Yan, T. (2016). Salidroside suppresses inflammation in a D-galactose-induced rat model of Alzheimer’s disease via SIRT1/NF-κB pathway. Metabolic Brain Disease, 31(4), 771–778. https://doi.org/10.1007/s11011-016-9813-2
Article CAS PubMed Google Scholar
Guillamón-Vivancos, T., Gómez-Pinedo, U., & Matías-Guiu, J. (2015). Astrocytes in neurodegenerative diseases (I): Function and molecular description. Neurologia (Barcelona, Spain), 30(2), 119–129. https://doi.org/10.1016/j.nrl.2012.12.007
Guo, N., McDermott, K. D., Shih, Y. T., Zanga, H., Ghosh, D., Herber, C., Meara, W. R., Coleman, J., Zagouras, A., Wong, L. P., Sadreyev, R., Gonçalves, J. T., & Sahay, A. (2022). Transcriptional regulation of neural stem cell expansion in the adult hippocampus. eLife, 11, e72195. https://doi.org/10.7554/eLife.72195
Ishibashi, M., Egawa, K., & Fukuda, A. (2019). Diverse actions of astrocytes in GABAergic signaling. International Journal of Molecular Sciences, 20(12), 2964. https://doi.org/10.3390/ijms20122964
Article CAS PubMed PubMed Central Google Scholar
Janocko, N. J., Brodersen, K. A., Soto-Ortolaza, A. I., Ross, O. A., Liesinger, A. M., Duara, R., Graff-Radford, N. R., Dickson, D. W., & Murray, M. E. (2012). Neuropathologically defined subtypes of Alzheimer’s disease differ significantly from neurofibrillary tangle-predominant dementia. Acta Neuropathologica, 124(5), 681–692. https://doi.org/10.1007/s00401-012-1044-y
Article PubMed PubMed Central Google Scholar
Jia, Y., Wang, X., Chen, Y., Qiu, W., Ge, W., & Ma, C. (2021). Proteomic and transcriptomic analyses reveal pathological changes in the entorhinal cortex region that correlate well with dysregulation of ion transport in patients with Alzheimer’s disease. Molecular Neurobiology, 58(8), 4007–4027. https://doi.org/10.1007/s12035-021-02356-3
Article CAS PubMed Google Scholar
Jiménez-Balado, J., & Eich, T. S. (2021). GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer’s disease. Seminars in Cell & Developmental Biology, 116, 146–159. https://doi.org/10.1016/j.semcdb.2021.01.005
Khan, S., Barve, K. H., & Kumar, M. S. (2020). Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease. Current Neuropharmacology, 18(11), 1106–1125. https://doi.org/10.2174/1570159X18666200528142429
Article CAS PubMed PubMed Central Google Scholar
Li, J., Liu, W., Sun, W., Rao, X., Chen, X., & Yu, L. (2023). A study on autophagy related biomarkers in Alzheimer’s disease based on bioinformatics. Cellular and Molecular Neurobiology, 43(7), 3693–3703. https://doi.org/10.1007/s10571-023-01379-9
Article CAS PubMed Google Scholar
Li, X., Guo, S., Liu, K., Zhang, C., Chang, H., Yang, W., Rong, S., Hu, Q., Cui, J., Wang, F., & Sun, T. (2020). GABRG2 deletion linked to genetic epilepsy with febrile seizures plus affects the expression of GABAA receptor subunits and other genes at different temperatures. Neuroscience, 438, 116–136. https://doi.org/10.1016/j.neuroscience.2020.04.049
Article CAS PubMed Google Scholar
Liu, M., Zhu, L., Guo, Y. J., Zhang, S. S., Jiang, L., Zhang, Y., Chao, F. L., & Tang, Y. (2023b). The effects of voluntary running exercise on the astrocytes of the medial prefrontal cortex in APP/PS1 mice. The Journal of Comparative Neurology, 531(11), 1147–1162. https://doi.org/10.1002/cne.25485
Liu, Y., Guo, W., & Hong, S. L. (2023a). Aerobic exercise mitigates hippocampal neuronal apoptosis by regulating DAPK1/CDKN2A/REDD1/FoXO1/FasL signaling pathway in D-galactose-induced aging mice. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 37(10), e23205. https://doi.org/10.1096/fj.202300847RR
Article CAS PubMed Google Scholar
Liu, Y., Meng, X. K., Shao, W. Z., Liu, Y. Q., Tang, C., Deng, S. S., Tang, C. F., Zheng, L., & Guo, W. (2024). miR-34a/TAN1/CREB axis engages in alleviating oligodendrocyte trophic factor-induced myelin repair function and astrocyte-dependent neuroinflammation in the early stages of Alzheimer’s disease: The anti-neurodegenerative effect of treadmill exercise. Neurochemical Research, 49(4), 1105–1120. https://doi.org/10.1007/s11064-024-04108-w
Article CAS PubMed Google Scholar
Luchetti, S., Huitinga, I., & Swaab, D. F. (2011). Neurosteroid and GABA-A receptor alterations in Alzheimer’s disease, Parkinson’s disease and multiple sclerosis. Neuroscience, 191, 6–21. https://doi.org/10.1016/j.neuroscience.2011.04.010
Article CAS PubMed Google Scholar
Pilipenko, V., Narbute, K., Amara, I., Trovato, A., Scuto, M., Pupure, J., Jansone, B., Poikans, J., Bisenieks, E., Klusa, V., & Calabrese, V. (2019). GABA-containing compound gammapyrone protects against brain impairments in Alzheimer’s disease model male rats and prevents mitochondrial dysfunction in cell culture. Journal of Neuroscience Research, 97(6), 708–726. https://doi.org/10.1002/jnr.24396
Article CAS PubMed Google Scholar
Ruan, Q., Hu, X., Ao, H., Ma, H., Gao, Z., Liu, F., Kong, D., Bao, Z., & Yu, Z. (2014). The neurovascular protective effects of huperzine A on D-galactose-induced inflammatory damage in the rat hippocampus. Gerontology, 60(5), 424–439. https://doi.org/10.1159/000358235
Article CAS PubMed Google Scholar
Sharma, P., Sharma, B. S., Raval, H., & Singh, V. (2023). Endocytosis of GABA receptor: Signaling in nervous system. Progress in Molecular Biology and Translational Science, 196, 125–139. https://doi.org/10.1016/bs.pmbts.2022.06.032
Article CAS PubMed Google Scholar
Wang, J., Zhou, C., Huang, Z., Ji, X., Cui, R., Kang, Y., Zhang, G., Wang, Y., & Zhang, T. (2024b). Repetitive transcranial magnetic stimulation-mediated neuroprotection in the 5xFAD mouse model of Alzheimer’s disease through GABRG2 and SNAP25 modulation. Molecular Neurobiology. https://doi.org/10.1007/s12035-024-04354-7
留言 (0)