Ahmed, T. (2023). Bio-inspired artificial synapses: Neuromorphic computing chip engineering with soft biomaterials. Memories–Materials Devices Circuits and Systems. https://doi.org/10.1016/j.memori.2023.100088
Anderson, N., & Piccinini, G. (2024). The Physical Signature of Computation: A Robust Mapping Account. Oxford: Oxford University Press.
Bohm, D. (1951). Quantum Theory. Englewood Cliffs, N. J., USA: Prentice-Hall.
Craver, C. F. (2007). Explaining the Brain. Oxford: Oxford University Press.
Dempsey, W. P., Zhuowei, Du., Natcochiy, A., Smith, D. K., Czajkowski, A. A., Robson, D. N., Li, J. M., Applebaum, S., Truong, T. V., Kesselman, C., Fraser, S. E., & Arnold, D. B. (2022). Regional synapse gain and loss accompany memory formation in larval Zebrafish. PNAS, 3, e2107661119. https://doi.org/10.1073/pnas2107661119
Eisen, A. J., Kozachkov, L., Bastos, A. M., Donoghue, J. A., Mahnke, M. K., Brincat, S. L., Chandra, S., Tauber, J., Brown, E. N., Fiete, I. R., & Miller, E. K. (2024). Propofol anesthesia destabilizes neural dynamics across cortex. Neuron[SPACE]https://doi.org/10.1016/j.neuron.2024.06.011
Fernandez-Ruiz, A., Sirota, A., Lopes-dos-Santos, V., & Dupret, D. (2023). Over and above frequency: Gamma oscillations as units of neural circuit operations. Neuron. https://doi.org/10.1016/j.neuron.2023.02.026
Fornito, A., Zalesky, A., & Bullmore, E. T. (2016). Fundamentals of Brain Network Analysis. Academic Press, an imprint of Elsevier, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo.
Guo, J. Y., Ragland, J. D., & Carter, C. S. (2019). Memory and cognition in schizophrenia. Mol Psychiatry, 24(5), 633–642. https://doi.org/10.1038/s41380-018-0231-1
Article CAS PubMed Google Scholar
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770-778. https://doi.org/10.1109/CVPR.2016.90
Johansen, J. P., Diaz-Mataix, L., Hamanaka, H., Ozawa, T., Ycu, E., Koivumaa, J., Kumar, A., Hou, M., Deisseroth, K., Boyden, E. S., & LeDoux, J. E. (2014). Hebbian and modularity mechanisms interact to trigger associative memory formation. PNAS). www.pnas.org/cgi/doi/10.1073/pnas.1421304111
Josselyn, S. A., & Tonegawa, S. (2020). Memory engrams: Recalling the past and imagining the future, Science, 367(6473). https://doi.org/10.1126/science.aaw4325
King, D. J., Hodgekins, J., Chouinard, P. A., Chouinard, V.-A., & Sperandio, I. (2017). A review of abnormalities in the perception of visual illusions in schizophrenia. Psychonomic Bulletin & Review, 24, 734–751. https://doi.org/10.3758/s13423-016-1168-5
Li, M., Liu, J., & Tsien, J. Z. (2016). Theory of connectivity: Nature and nurture of cell assemblies and cognitive computation. Frontiers in Neural Circuits, 10, 34. https://doi.org/10.3389/fncir.2016.00034
Article PubMed PubMed Central Google Scholar
Lundqvist, M., Brincat, S. L., Rose J., Warden M. R., Buschman T. J., Miller E. K., & Herman, P. (2023). Working memory control dynamics follow principles of spatial computing. Nature Commununication, 14:1429. https://doi.org/10.1038/s41467-023-36555-4
Lundqvist, M., Miller E. K., Nordmark, J., Liljefors, J., & Herman, P. (2024). Beta: bursts of cognition. Trends in Cognitive Sciences. In press. https://doi.org/10.1016/j.tics.2024.03.010
Mohan, U. R., Zhang, H., Ermentrout, B., & Jacobs, J. (2024). The direction of theta and alpha travelling waves modulates human memory processing. Nature Human Behaviour[SPACE] https://doi.org/10.1038/s41562-024-01838-3. Epub ahead of print. PMID: 38459263.
Panoz-Brown, D., Iyer, V., Carey, L. M., Sluka, C. M., Rajio, G., Kestenman, J., Gentry, M., Brotheridge, S., Somekh, I., Corbin, H. E., Tucker, K. G., Almeida, B., Hex, S. B., Garcia, K. D., Hohmann, A. G., & Crystal, J. D. (2018). Replay of episodic memories in the rat. Current Biology, 28, 1628–1634. https://doi.org/10.1016/j.cub.2018.04.006
Article CAS PubMed Google Scholar
Piccinini, G. (2020). Neurocognitive Mechanisms: Explaining Biological Cognition. Oxford: Oxford University Press.
Piccinini, G., & Bahar, S. (2013). Neural Computation and the Theory of Computational Cognition. Cognitive Science, 37(3), 453–88. https://doi.org/10.1111/cogs.12012
Selesnick, S. (2024). Neural waves and computation in a neural net model I: Convolutional hierarchies. Journal of Computational Neuroscience. https://doi.org/10.1007/s10827-024-00866-2
Selesnick, S. A. (2019). Tsien’s power-of-two law in a neuromorphic network model suitable for artificial intelligence. IfCoLog Journal of Logics and their Applications, 6(7), 1223–1251.
Selesnick, S. A. (2022). Quantum-like Networks. An approach to neural behavior through their mathematics and logic: World Scientific.
Selesnick, S. (2023). Neural waves and short term memory in a neural network model. Journal of Biological Physics, 49, 159–194. https://doi.org/10.1007/s10867-023-09627-1
Article PubMed PubMed Central Google Scholar
Selesnick, S. A., & Owen, G. S. (2012). Quantum-like logics and schizophrenia. Journal of Applied Logic, 10(1), 115–126. https://doi.org/10.1016/j.jal.2011.12.001
Selesnick, S. A., & Piccinini, G. (2018). Quantum-like Behavior without Quantum Physics II. A quantum-like model of neural network dynamics. Journal of Biological Physics, 44, 501–538. https://doi.org/10.1007/s10867-018-9504-9
Article CAS PubMed PubMed Central Google Scholar
Selesnick, S. A., & Piccinini, G. (2019). Quantum-like Behavior without Quantum Physics III. Logic and memory. Journal of Biological Physics, 45, 335–366. https://doi.org/10.1007/s10867-019-09532-6
Article CAS PubMed PubMed Central Google Scholar
Selesnick, S. A., Rawling, J. P., & Piccinini, G. (2017). Quantum-like Behavior without Quantum Physics I. Kinematics of Neural-like systems. Journal of Biological Physics, 43, 415–444. https://doi.org/10.1007/s10867-017-9460-9
Article CAS PubMed PubMed Central Google Scholar
Sung, C., Hwang, H., & Yoo, K. (2018). Perspective: A review on memristive hardware for neuromorphic computation. Journal of Applied Physics, 124, 151903. https://doi.org/10.1063/1.5037835
Tomé, D. F., Zhang, Ying, Aida, T., Mosto, O., Yifeng, Lu., Chen, M., Sadeh, S., Roy, D. S., & Clopath, C. (2024). Dynamic and selective engrams emerge with memory consolidation. Nature Neuroscience. https://doi.org/10.1038/s41593-023-01551-w
Article PubMed PubMed Central Google Scholar
Tsien, J. Z. (2016). Principles of Intelligence: On Evolutionary Logic of the Brain. Frontiers in System Neuroscience,9(186). https://doi.org/10.3389/fnsys.2015.00186
Tsien, J. Z. (2015). A Postulate on the Brain’s Basic Wiring Logic. Trends Neuroscience, 38(11), 669–671. https://doi.org/10.1016/j.tins.2015.09.002
Van Hooser, S. D., Escobar, G. M., Maffei, A., & Miller, P. (2014). Emerging feed-forward inhibition allows the robust formation of direction selectivity in the developing ferret visual cortex. Journal of Neurophysiology, 111, 2355–2373. https://doi.org/10.1152/jn.00891.2013
Article PubMed PubMed Central Google Scholar
Xie, K., Fox, G. E., Liu, J., Lyu, C., Lee, J. C., Kuang, H., Jacobs, S., Li, M., Liu, T., Song, S., & Tsien, J. Z. (2016). Brain Computation Is Organized via Power-of-Two-Based Permutation Logic, Frontiers in System Neuroscience10(95). https://doi.org/10.3389/fnsys.2016.00095
留言 (0)