Gut microbiota and metabolites of cirrhotic portal hypertension: a novel target on the therapeutic regulation

Ginès P, Krag A, Abraldes JG, et al. Liver cirrhosis. Lancet. 2021;398:1359–76.

Article  PubMed  Google Scholar 

Gracia-Sancho J, Marrone G, Fernández-Iglesias A. Hepatic microcirculation and mechanisms of portal hypertension. Nat Rev Gastroenterol Hepatol. 2019;16:221–34.

Article  PubMed  Google Scholar 

Jalan R, D’Amico G, Trebicka J, et al. New clinical and pathophysiological perspectives defining the trajectory of cirrhosis. J Hepatol. 2021;75:S14–26.

Article  PubMed  Google Scholar 

Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–7.

Article  CAS  PubMed  Google Scholar 

Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16(6):341–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeBerardinis RJ, Keshari KR. Metabolic analysis as a driver for discovery, diagnosis, and therapy. Cell. 2022;185(15):2678–89.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qin N, Yang F, Li A, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513:59–64.

Article  CAS  PubMed  Google Scholar 

Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: pathophysiological basis for therapy. J Hepatol. 2020;72:558–77.

Article  CAS  PubMed  Google Scholar 

Tilg H, Adolph TE, Trauner M. Gut-liver axis: pathophysiological concepts and clinical implications. Cell Metab. 2022;34:1700–18.

Article  CAS  PubMed  Google Scholar 

Gedgaudas R, Bajaj JS, Skieceviciene J, et al. Circulating microbiome in patients with portal hypertension. Gut Microbes. 2022;14:2029674.

Article  PubMed  PubMed Central  Google Scholar 

Yokoyama K, Tsuchiya N, Yamauchi R, et al. Exploratory research on the relationship between human gut microbiota and portal hypertension. Intern Med. 2020;59:2089–94.

Article  PubMed  PubMed Central  Google Scholar 

Ye J, Lv L, Wu W, et al. Butyrate protects mice against methionine-choline-deficient diet-induced non-alcoholic steatohepatitis by improving gut barrier function, attenuating inflammation and reducing endotoxin levels. Front Microbiol. 2018;9:1967.

Article  PubMed  PubMed Central  Google Scholar 

Machiels K, Joossens M, Sabino J, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014;63(8):1275–83.

Article  CAS  PubMed  Google Scholar 

Pignatelli P, Fabietti G, Ricci A, et al. How periodontal disease and presence of nitric oxide reducing oral bacteria can affect blood pressure. Int J Mol Sci. 2020;21(20):7538.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8(11):1715.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu Z, Zhou H, Liu D, et al. Alterations in the gut microbiota and the efficacy of adjuvant probiotic therapy in liver cirrhosis. Front Cell Infect Microbiol. 2023;13:1218552.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teltschik Z, Wiest R, Beisner J, et al. Intestinal bacterial translocation in rats with cirrhosis is related to compromised Paneth cell antimicrobial host defense. Hepatology. 2012;55:1154–63.

Article  PubMed  Google Scholar 

Moghadamrad S, McCoy KD, Geuking MB, et al. Attenuated portal hypertension in germ-free mice: function of bacterial flora on the development of mesenteric lymphatic and blood vessels. Hepatology. 2015;61:1685–95.

Article  CAS  PubMed  Google Scholar 

Hassan M, Moghadamrad S, Sorribas M, et al. Paneth cells promote angiogenesis and regulate portal hypertension in response to microbial signals. J Hepatol. 2020;73:628–39.

Article  CAS  PubMed  Google Scholar 

Huang HC, Tsai MH, Chang CC, et al. Microbiota transplants from feces or gut content attenuated portal hypertension and portosystemic collaterals in cirrhotic rats. Clin Sci (Lond). 2021;135(24):2709–28.

Article  CAS  PubMed  Google Scholar 

Agus A, Clément K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut. 2021;70:1174–82.

Article  CAS  PubMed  Google Scholar 

Huc T, Jurkowska H, Wróbel M, et al. Colonic hydrogen sulfide produces portal hypertension and systemic hypotension in rats. Exp Biol Med (Maywood). 2018;243:96–106.

Article  CAS  PubMed  Google Scholar 

Huc T, Konop M, Onyszkiewicz M, et al. Colonic indole, gut bacteria metabolite of tryptophan, increases portal blood pressure in rats. Am J Physiol Regul Integr Comp Physiol. 2018;315:R646–55.

Article  CAS  PubMed  Google Scholar 

Juanola O, Ferrusquía-Acosta J, García-Villalba R, et al. Circulating levels of butyrate are inversely related to portal hypertension, endotoxemia, and systemic inflammation in patients with cirrhosis. FASEB J. 2019;33:11595–605.

Article  CAS  PubMed  Google Scholar 

Žížalová K, Nováková B, Vecka M, et al. Serum concentration of taurochenodeoxycholic acid predicts clinically significant portal hypertension. Liver Int. 2023;43:888–95.

Article  PubMed  Google Scholar 

Carbonero F, Benefiel AC, Alizadeh-Ghamsari AH, et al. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol. 2012;3:448.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lim JJ, Liu YH, Khin ES, et al. Vasoconstrictive effect of hydrogen sulfide involves downregulation of cAMP in vascular smooth muscle cells. Am J Physiol Cell Physiol. 2008;295:C1261–70.

Article  CAS  PubMed  Google Scholar 

Tomasova L, Dobrowolski L, Jurkowska H, et al. Intracolonic hydrogen sulfide lowers blood pressure in rats. Nitric Oxide. 2016;60:50–8.

Article  CAS  PubMed  Google Scholar 

Su X, Gao Y, Yang R. Gut microbiota-derived tryptophan metabolites maintain gut and systemic homeostasis. Cells. 2022;11:2296.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huć T, Nowinski A, Drapala A, et al. Indole and indoxyl sulfate, gut bacteria metabolites of tryptophan, change arterial blood pressure via peripheral and central mechanisms in rats. Pharmacol Res. 2018;130:172–9.

Article  PubMed  Google Scholar 

Sehgal R, Ilha M, Vaittinen M, et al. Indole-3-propionic acid, a gut-derived tryptophan metabolite, associates with hepatic fibrosis. Nutrients. 2021;13:3509.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif