The astrochemical evolutionary traits of phospholipid membrane homochirality

Howlett, M. G. & Fletcher, S. P. From autocatalysis to survival of the fittest in self-reproducing lipid systems. Nat. Rev. Chem. 7, 673–691 (2023).

Article  PubMed  Google Scholar 

Schmitt-Kopplin, P. et al. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl Acad. Sci. USA 107, 2763–2768 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Öberg, K. I. Photochemistry and astrochemistry: photochemical pathways to interstellar complex organic molecules. Chem. Rev. 116, 9631–9663 (2016).

Article  PubMed  Google Scholar 

van Dishoeck, E. F. Astrochemistry of dust, ice and gas: introduction and overview. Faraday Discuss. 168, 9–47 (2014).

Article  CAS  PubMed  Google Scholar 

Tielens, A. G. G. M. The molecular universe. Rev. Mod. Phys. 85, 1021–1081 (2013).

Article  CAS  Google Scholar 

Burke, D. J. & Brown, W. A. Ice in space: surface science investigations of the thermal desorption of model interstellar ices on dust grain analogue surfaces. Phys. Chem. Chem. Phys. 12, 5947–5969 (2010).

Article  CAS  PubMed  Google Scholar 

Potapov, A., Jäger, C. & Henning, T. Ice coverage of dust grains in cold astrophysical environments. Phys. Rev. Lett. 124, 221103 (2020).

Article  CAS  PubMed  Google Scholar 

Rosu-Finsen, A. et al. Peeling the astronomical onion. Phys. Chem. Chem. Phys. 18, 31930–31935 (2016).

Article  CAS  PubMed  Google Scholar 

Cohen, Z. R. et al. Plausible sources of membrane-forming fatty acids on the early Earth: a review of the literature and an estimation of amounts. ACS Earth Space Chem. 7, 11–27 (2023).

Article  CAS  PubMed  Google Scholar 

Glavin, D. P., Burton, A. S., Elsila, J. E., Aponte, J. C. & Dworkin, J. P. The search for chiral asymmetry as a potential biosignature in our Solar System. Chem. Rev. 120, 4660–4689 (2020).

Article  CAS  PubMed  Google Scholar 

Wilhelm, M. B. et al. Extraction instruments to enable detection of origin-diagnostic lipids for life detection. In 52nd Lunar and Planetary Science Conference LPI contribution no. 2548, id.2634 (LPI, 2021).

Finkel, P. L., Carrizo, D., Parro, V. & Sánchez-García, L. An overview of lipid biomarkers in terrestrial extreme environments with relevance for Mars exploration. Astrobiology 23, 563–604 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Peretó, J., López-García, P. & Moreira, D. Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem. Sci. 29, 469–477 (2004).

Article  PubMed  Google Scholar 

Chen, L. L., Pousada, M. & Haines, T. H. The flagellar membrane of Ochromonas danica. Lipid composition. J. Biol. Chem. 251, 1835–1842 (1976).

Article  CAS  PubMed  Google Scholar 

Moss, F. R. et al. Halogenation-dependent effects of the chlorosulfolipids of Ochromonas danica on lipid bilayers. ACS Chem. Biol. 15, 2986–2995 (2020).

Article  PubMed Central  Google Scholar 

Pohorille, A. & Deamer, D. Self-assembly and function of primitive cell membranes. Res. Microbiol. 160, 449–456 (2009).

Article  CAS  PubMed  Google Scholar 

Namani, T. et al. Novel chimeric amino acid-fatty alcohol ester amphiphiles self-assemble into stable primitive membranes in diverse geological settings. Astrobiology 23, 327–343 (2023).

Article  CAS  PubMed  Google Scholar 

Suzuki, N. & Itabashi, Y. Possible roles of amphiphilic molecules in the origin of biological homochirality. Symmetry 11, 966 (2019).

Article  CAS  Google Scholar 

Azua-Bustos, A. et al. Dark microbiome and extremely low organics in Atacama fossil delta unveil Mars life detection limits. Nat. Commun. 14, 808 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martin, H. S., Podolsky, K. A. & Devaraj, N. K. Probing the role of chirality in phospholipid membranes. ChemBioChem 22, 3148–3157 (2021).

Article  CAS  PubMed  Google Scholar 

Bilia, A. R. et al. Vesicles and micelles: two versatile vectors for the delivery of natural products. J. Drug Deliv. Sci. Technol. 32, 241–255 (2016).

Article  CAS  Google Scholar 

Liu, P., Chen, G. & Zhang, J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 27, 1372 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, W., Ye, A., Han, F. & Han, J. Advances and challenges in liposome digestion: surface interaction, biological fate, and GIT modeling. Adv. Colloid Interface Sci. 263, 52–67 (2019).

Article  CAS  PubMed  Google Scholar 

Benvegnu, T., Lemiègre, L. & Cammas-Marion, S. New generation of liposomes called archaeosomes based on natural or synthetic archaeal lipids as innovative formulations for drug delivery. Recent Pat. Drug Deliv. Formul. 3, 206–220 (2009).

Article  CAS  PubMed  Google Scholar 

Paolucci, V., Leriche, G., Koyanagi, T. & Yang, J. Evaluation of tetraether lipid-based liposomal carriers for encapsulation and retention of nucleoside-based drugs. Bioorg. Med. Chem. Lett. 27, 4319–4322 (2017).

Article  CAS  PubMed  Google Scholar 

Penkauskas, T. & Preta, G. Biological applications of tethered bilayer lipid membranes. Biochimie 157, 131–141 (2019).

Article  CAS  PubMed  Google Scholar 

Jiang, Y., Thienpont, B., Sturgis, J. N., Dittman, J. & Scheuring, S. Membrane-mediated protein interactions drive membrane protein organization. Nat. Commun. 13, 7373 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fiore, M. & Buchet, R. Symmetry breaking of phospholipids. Symmetry 12, 1488 (2020).

Article  CAS  Google Scholar 

Gattinger, A., Schloter, M. & Munch, J. C. Phospholipid etherlipid and phospholipid fatty acid fingerprints in selected euryarchaeotal monocultures for taxonomic profiling. FEMS Microbiol. Lett. 213, 133–139 (2002).

Article  CAS  PubMed  Google Scholar 

Dibrova, D. V., Galperin, M. Y. & Mulkidjanian, A. Y. Phylogenomic reconstruction of archaeal fatty acid metabolism. Environ. Microbiol. 16, 907–918 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Damsté, J. S. et al. Structural characterization of diabolic acid-based tetraester, tetraether and mixed ether/ester, membrane-spanning lipids of bacteria from the order Thermotogales. Arch. Microbiol. 188, 629–641 (2007).

Article  PubMed  PubMed Central  Google Scholar 

Weijers, J. W. H. et al. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environ. Microbiol. 8, 648–657 (2006).

Article  CAS  PubMed  Google Scholar 

Villanueva, L. et al. Bridging the membrane lipid divide: bacteria of the FCB group superphylum have the potential to synthesize archaeal ether lipids. ISME J. 15, 168–182 (2021).

Article 

留言 (0)

沒有登入
gif