Chodasewicz, K. Evolution, reproduction and definition of life. Theory Biosci. 133, 39–45 (2014).
Woese, C. R. On the evolution of cells. Proc. Natl Acad. Sci. USA 99, 8742–8747 (2002).
Article CAS PubMed PubMed Central Google Scholar
Nghe, P. et al. Prebiotic network evolution: six key parameters. Mol. Biosyst. 11, 3206–3217 (2015).
Article CAS PubMed Google Scholar
Ralser, M. An appeal to magic? The discovery of a non-enzymatic metabolism and its role in the origins of life. Biochem. J. 475, 2577–2592 (2018).
Article CAS PubMed Google Scholar
Stewart, J. E. The origins of life: the managed-metabolism hypothesis. Found. Sci. 24, 171–195 (2019).
Deamer, D. & Weber, A. L. Bioenergetics and life’s origins. Cold Spring Harb. Perspect. Biol. 2, a004929 (2010).
Article PubMed PubMed Central Google Scholar
Bissette, A. J. & Fletcher, S. P. Mechanisms of autocatalysis. Angew. Chem. Int. Ed. Engl. 52, 12800–12826 (2013).
Article CAS PubMed Google Scholar
Robertson, A., Sinclair, A. J. & Philp, D. Minimal self-replicating systems. Chem. Soc. Rev. 29, 141–152 (2000).
Hardy, M. D. et al. Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth. Proc. Natl Acad. Sci. USA 112, 8187–8192 (2015).
Article CAS PubMed PubMed Central Google Scholar
Pascal, R., Pross, A. & Sutherland, J. D. Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics. Open. Biol. 3, 130156 (2013).
Article PubMed PubMed Central Google Scholar
Grzybowski, B. A., Fitzner, K., Paczesny, J. & Granick, S. From dynamic self-assembly to networked chemical systems. Chem. Soc. Rev. 46, 5647–5678 (2017).
Article CAS PubMed Google Scholar
England, J. L. Dissipative adaptation in driven self-assembly. Nat. Nanotechnol. 10, 919–923 (2015).
Article CAS PubMed Google Scholar
Kroiss, D., Ashkenasy, G., Braunschweig, A. B., Tuttle, T. & Ulijn, R. V. Catalyst: can systems chemistry unravel the mysteries of the chemical origins of life? Chem 5, 1917–1920 (2019).
Bai, Y. et al. Achieving biopolymer synergy in systems chemistry. Chem. Soc. Rev. 47, 5444–5456 (2018).
Article CAS PubMed Google Scholar
Whitesides, G. M. & Ismagilov, R. F. Complexity in chemistry. Science 284, 89–92 (1999).
Article CAS PubMed Google Scholar
Ruiz-Mirazo, K., Briones, C. & de la Escosura, A. Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014).
Article CAS PubMed Google Scholar
Sorrenti, A., Leira-Iglesias, J., Markvoort, A. J., de Greef, T. F. A. & Hermans, T. M. Non-equilibrium supramolecular polymerization. Chem. Soc. Rev. 46, 5476–5490 (2017).
Article CAS PubMed PubMed Central Google Scholar
Ashkenasy, G., Hermans, T. M., Otto, S. & Taylor, A. F. Systems chemistry. Chem. Soc. Rev. 46, 2543–2554 (2017).
Article CAS PubMed Google Scholar
Merindol, R. & Walther, A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chem. Soc. Rev. 46, 5588–5619 (2017).
Article CAS PubMed Google Scholar
Afrose, S. P., Ghosh, C. & Das, D. Substrate induced generation of transient self-assembled catalytic systems. Chem. Sci. 12, 14674–14685 (2021).
Article CAS PubMed PubMed Central Google Scholar
Semenov, S. et al. Rational design of functional and tunable oscillating enzymatic networks. Nat. Chem. 7, 160–165 (2015).
Article CAS PubMed Google Scholar
Chatterjee, A., Reja, A., Pal, S. & Das, D. Systems chemistry of peptide-assemblies for biochemical transformations. Chem. Soc. Rev. 51, 3047–3070 (2022).
Article CAS PubMed Google Scholar
Qualls, M. L., Sagar, R., Lou, J. & Best, M. D. Demolish and rebuild: controlling lipid self-assembly toward triggered release and artificial cells. J. Phys. Chem. B 125, 12918–12933 (2021).
Article CAS PubMed Google Scholar
Clixby, G. & Twyman, L. Self-replicating systems. Org. Biomol. Chem. 14, 4170–4184 (2016).
Article CAS PubMed Google Scholar
Penocchio, E., Rao, R. & Esposito, M. Thermodynamic efficiency in dissipative chemistry. Nat. Commun. 10, 3865 (2019).
Article PubMed PubMed Central Google Scholar
Das, K., Gabrielli, L. & Prins, L. J. Chemically fueled self-assembly in biology and chemistry. Angew. Chem. Int. Ed. Engl. 60, 20120–20143 (2021).
Article CAS PubMed PubMed Central Google Scholar
Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).
Article CAS PubMed Google Scholar
van der Helm, M. P., de Beun, T. & Eelkema, R. On the use of catalysis to bias reaction pathways in out-of-equilibrium systems. Chem. Sci. 12, 4484–4493 (2021).
Article PubMed PubMed Central Google Scholar
Rieß, B., Grötsch, R. K. & Boekhoven, J. The design of dissipative molecular assemblies driven by chemical reaction cycles. Chem 6, 552–578 (2020).
Tena-Solsona, M. & Boekhoven, J. Dissipative self-assembly of peptides. Isr. J. Chem. 59, 898–905 (2019).
van Rossum, S. A. P., Tena-Solsona, M., van Esch, J. H., Eelkema, R. & Boekhoven, J. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chem. Soc. Rev. 46, 5519–5535 (2017).
Weißenfels, M., Gemen, J. & Klajn, R. Dissipative self-assembly: fueling with chemicals versus light. Chem 7, 23–37 (2021).
De, S. & Klajn, R. Dissipative self-assembly driven by the consumption of chemical fuels. Adv. Mat. 30, 1706750 (2018).
Hossain, M. M., Atkinson, J. L. & Hartley, C. S. Dissipative assembly of macrocycles comprising multiple transient bonds. Angew. Chem. Int. Ed. Engl. 59, 13807–13813 (2020).
留言 (0)