Origins of non-ideal behaviour in voltammetric analysis of redox-active monolayers

Kang, D., Ricci, F., White, R. J. & Plaxco, K. W. Survey of redox-active moieties for application in multiplexed electrochemical biosensors. Anal. Chem. 88, 10452–10458 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gooding, J. J. & Darwish, N. The rise of self-assembled monolayers for fabricating electrochemical biosensors — an interfacial perspective. Chem. Rec. 12, 92–105 (2012).

Article  CAS  PubMed  Google Scholar 

Evans, N. H., Rahman, H., Davis, J. J. & Beer, P. D. Surface-attached sensors for cation and anion recognition. Anal. Bioanal. Chem. 402, 1739–1748 (2012).

Article  CAS  PubMed  Google Scholar 

Bizzotto, D., Burgess, I. J., Doneux, T., Sagara, T. & Yu, H.-Z. Beyond simple cartoons: challenges in characterizing electrochemical biosensor interfaces. ACS Sens. 3, 5–12 (2018).

Article  CAS  PubMed  Google Scholar 

Bullock, R. M., Das, A. K. & Appel, A. M. Surface immobilization of molecular electrocatalysts for energy conversion. Chem. Eur. J. 23, 7626–7641 (2017).

Article  CAS  PubMed  Google Scholar 

Reyes Cruz, E. A. et al. Molecular-modified photocathodes for applications in artificial photosynthesis and solar-to-fuel technologies. Chem. Rev. 122, 16051–16109 (2022).

Article  CAS  PubMed  Google Scholar 

Kuehnel, M. F., Orchard, K. L., Dalle, K. E. & Reisner, E. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J. Am. Chem. Soc. 139, 7217–7223 (2017).

Article  CAS  PubMed  Google Scholar 

Fabre, B. Ferrocene-terminated monolayers covalently bound to hydrogen-terminated silicon surfaces. Toward the development of charge storage and communication devices. Acc. Chem. Res. 43, 1509–1518 (2010).

Article  CAS  PubMed  Google Scholar 

Lindsey, J. S. & Bocian, D. F. Molecules for charge-based information storage. Acc. Chem. Res. 44, 638–650 (2011).

Article  CAS  PubMed  Google Scholar 

Zhu, H. & Li, Q. Novel molecular non-volatile memory: application of redox-active molecules. Appl. Sci. 6, 7 (2016).

Article  CAS  Google Scholar 

Han, Y. et al. Electric-field-driven dual-functional molecular switches in tunnel junctions. Nat. Mater. 19, 843–848 (2020).

Article  CAS  PubMed  Google Scholar 

Casalini, S., Bortolotti, C. A., Leonardi, F. & Biscarini, F. Self-assembled monolayers in organic electronics. Chem. Soc. Rev. 46, 40–71 (2017).

Article  CAS  PubMed  Google Scholar 

Pinson, J. & Podvorica, F. Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem. Soc. Rev. 34, 429–439 (2005).

Article  CAS  PubMed  Google Scholar 

Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).

Article  CAS  PubMed  Google Scholar 

Laviron, E. Surface linear potential sweep voltammetry: equation of the peaks for a reversible reaction when interactions between the adsorbed molecules are taken into account. J. Electroanal. Chem. Interfacial Electrochem. 52, 395–402 (1974).

Article  CAS  Google Scholar 

Laviron, E. & Roullier, L. General expression of the linear potential sweep voltammogram for a surface redox reaction with interactions between the adsorbed molecules. Applications to modified electrodes. J. Electroanal. Chem. 115, 65–74 (1980).

Article  CAS  Google Scholar 

Fabre, B. Functionalization of oxide-free silicon surfaces with redox-active assemblies. Chem. Rev. 116, 4808–4849 (2016).

Article  PubMed  Google Scholar 

Eckermann, A. L., Feld, D. J., Shaw, J. A. & Meade, T. J. Electrochemistry of redox-active self-assembled monolayers. Coord. Chem. Rev. 254, 1769–1802 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao, X., Wang, J., Zhou, F., Wang, J. & Tao, N. Quantification of redox-induced thickness changes of 11- ferrocenylundecanethiol self-assembled monolayers by electrochemical surface plasmon resonance. J. Phys. Chem. B 108, 7206–7212 (2004).

Article  CAS  Google Scholar 

Ye, S., Sato, Y. & Uosaki, K. Redox-induced orientation change of a self-assembled monolayer of 11-ferrocenyl-1-undecanethiol on a gold electrode studied by in situ FT-IRRAS. Langmuir 13, 3157–3161 (1997).

Article  CAS  Google Scholar 

Wong, R. A., Yokota, Y., Wakisaka, M., Inukai, J. & Kim, Y. Discerning the redox-dependent electronic and interfacial structures in electroactive self-assembled monolayers. J. Am. Chem. Soc. 140, 13672–13679 (2018).

Article  CAS  PubMed  Google Scholar 

Nerngchamnong, N. et al. Supramolecular structure of self-assembled monolayers of ferrocenyl terminated n-alkanethiolates on gold surfaces. Langmuir 30, 13447–13455 (2014).

Article  CAS  PubMed  Google Scholar 

Müller-Meskamp, L. et al. Molecular structure of ferrocenethiol islands embedded into alkanethiol self-assembled monolayers by UHV-STM. Phys. Status Solidi A 203, 1448–1452 (2006).

Article  Google Scholar 

Rudnev, A. V. et al. Ferrocene-terminated alkanethiol self-assembled monolayers: an electrochemical and in situ surface-enhanced infra-red absorption spectroscopy study. Electrochim. Acta 107, 33–44 (2013).

Article  CAS  Google Scholar 

Rudnev, A. V., Yoshida, K. & Wandlowski, T. Electrochemical characterization of self-assembled ferrocene-terminated alkanethiol monolayers on low-index gold single crystal electrodes. Electrochim. Acta 87, 770–778 (2013).

Article  CAS  Google Scholar 

Murphy, J. N., Cheng, A. K. H., Yu, H.-Z. & Bizzotto, D. On the nature of DNA self-assembled monolayers on Au: measuring surface heterogeneity with electrochemical in situ fluorescence microscopy. J. Am. Chem. Soc. 131, 4042–4050 (2009).

Article  CAS  PubMed  Google Scholar 

Abi, A. & Ferapontova, E. E. Unmediated by DNA electron transfer in redox-labeled DNA duplexes end-tethered to gold electrodes. J. Am. Chem. Soc. 134, 14499–14507 (2012).

Article  CAS  PubMed  Google Scholar 

Farjami, E., Campos, R. & Ferapontova, E. E. Effect of the DNA end of tethering to electrodes on electron transfer in methylene blue-labeled DNA duplexes. Langmuir 28, 16218–16226 (2012).

Article  CAS  PubMed  Google Scholar 

Randriamahazaka, H. & Ghilane, J. Electrografting and controlled surface functionalization of carbon based surfaces for electroanalysis. Electroanalysis 28, 13–26 (2016).

Article  CAS  Google Scholar 

Whang, D. R. Immobilization of molecular catalysts for artificial photosynthesis. Nano Converg. 7, 37 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Downard, A. J. Electrochemically assisted covalent modification of carbon electrodes. Electroanalysis 12, 1085–1096 (2000).

Article  CAS  Google Scholar 

Das, M. R., Wang, M., Szunerits, S., Gengembre, L. & Boukherroub, R. Clicking ferrocene groups to boron-doped diamond electrodes. Chem. Commun. https://doi.org/10.1039/b901481k (2009).

Das, A. K., Engelhard, M. H., Liu, F., Bullock, R. M. & Roberts, J. A. S. The electrode as organolithium reagent: catalyst-free covalent attachment of electrochemically active species to an azide-terminated glassy carbon electrode surface. Inorg. Chem. 52, 13674–13684 (2013).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif