Kang, D., Ricci, F., White, R. J. & Plaxco, K. W. Survey of redox-active moieties for application in multiplexed electrochemical biosensors. Anal. Chem. 88, 10452–10458 (2016).
Article CAS PubMed PubMed Central Google Scholar
Gooding, J. J. & Darwish, N. The rise of self-assembled monolayers for fabricating electrochemical biosensors — an interfacial perspective. Chem. Rec. 12, 92–105 (2012).
Article CAS PubMed Google Scholar
Evans, N. H., Rahman, H., Davis, J. J. & Beer, P. D. Surface-attached sensors for cation and anion recognition. Anal. Bioanal. Chem. 402, 1739–1748 (2012).
Article CAS PubMed Google Scholar
Bizzotto, D., Burgess, I. J., Doneux, T., Sagara, T. & Yu, H.-Z. Beyond simple cartoons: challenges in characterizing electrochemical biosensor interfaces. ACS Sens. 3, 5–12 (2018).
Article CAS PubMed Google Scholar
Bullock, R. M., Das, A. K. & Appel, A. M. Surface immobilization of molecular electrocatalysts for energy conversion. Chem. Eur. J. 23, 7626–7641 (2017).
Article CAS PubMed Google Scholar
Reyes Cruz, E. A. et al. Molecular-modified photocathodes for applications in artificial photosynthesis and solar-to-fuel technologies. Chem. Rev. 122, 16051–16109 (2022).
Article CAS PubMed Google Scholar
Kuehnel, M. F., Orchard, K. L., Dalle, K. E. & Reisner, E. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J. Am. Chem. Soc. 139, 7217–7223 (2017).
Article CAS PubMed Google Scholar
Fabre, B. Ferrocene-terminated monolayers covalently bound to hydrogen-terminated silicon surfaces. Toward the development of charge storage and communication devices. Acc. Chem. Res. 43, 1509–1518 (2010).
Article CAS PubMed Google Scholar
Lindsey, J. S. & Bocian, D. F. Molecules for charge-based information storage. Acc. Chem. Res. 44, 638–650 (2011).
Article CAS PubMed Google Scholar
Zhu, H. & Li, Q. Novel molecular non-volatile memory: application of redox-active molecules. Appl. Sci. 6, 7 (2016).
Han, Y. et al. Electric-field-driven dual-functional molecular switches in tunnel junctions. Nat. Mater. 19, 843–848 (2020).
Article CAS PubMed Google Scholar
Casalini, S., Bortolotti, C. A., Leonardi, F. & Biscarini, F. Self-assembled monolayers in organic electronics. Chem. Soc. Rev. 46, 40–71 (2017).
Article CAS PubMed Google Scholar
Pinson, J. & Podvorica, F. Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem. Soc. Rev. 34, 429–439 (2005).
Article CAS PubMed Google Scholar
Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).
Article CAS PubMed Google Scholar
Laviron, E. Surface linear potential sweep voltammetry: equation of the peaks for a reversible reaction when interactions between the adsorbed molecules are taken into account. J. Electroanal. Chem. Interfacial Electrochem. 52, 395–402 (1974).
Laviron, E. & Roullier, L. General expression of the linear potential sweep voltammogram for a surface redox reaction with interactions between the adsorbed molecules. Applications to modified electrodes. J. Electroanal. Chem. 115, 65–74 (1980).
Fabre, B. Functionalization of oxide-free silicon surfaces with redox-active assemblies. Chem. Rev. 116, 4808–4849 (2016).
Eckermann, A. L., Feld, D. J., Shaw, J. A. & Meade, T. J. Electrochemistry of redox-active self-assembled monolayers. Coord. Chem. Rev. 254, 1769–1802 (2010).
Article CAS PubMed PubMed Central Google Scholar
Yao, X., Wang, J., Zhou, F., Wang, J. & Tao, N. Quantification of redox-induced thickness changes of 11- ferrocenylundecanethiol self-assembled monolayers by electrochemical surface plasmon resonance. J. Phys. Chem. B 108, 7206–7212 (2004).
Ye, S., Sato, Y. & Uosaki, K. Redox-induced orientation change of a self-assembled monolayer of 11-ferrocenyl-1-undecanethiol on a gold electrode studied by in situ FT-IRRAS. Langmuir 13, 3157–3161 (1997).
Wong, R. A., Yokota, Y., Wakisaka, M., Inukai, J. & Kim, Y. Discerning the redox-dependent electronic and interfacial structures in electroactive self-assembled monolayers. J. Am. Chem. Soc. 140, 13672–13679 (2018).
Article CAS PubMed Google Scholar
Nerngchamnong, N. et al. Supramolecular structure of self-assembled monolayers of ferrocenyl terminated n-alkanethiolates on gold surfaces. Langmuir 30, 13447–13455 (2014).
Article CAS PubMed Google Scholar
Müller-Meskamp, L. et al. Molecular structure of ferrocenethiol islands embedded into alkanethiol self-assembled monolayers by UHV-STM. Phys. Status Solidi A 203, 1448–1452 (2006).
Rudnev, A. V. et al. Ferrocene-terminated alkanethiol self-assembled monolayers: an electrochemical and in situ surface-enhanced infra-red absorption spectroscopy study. Electrochim. Acta 107, 33–44 (2013).
Rudnev, A. V., Yoshida, K. & Wandlowski, T. Electrochemical characterization of self-assembled ferrocene-terminated alkanethiol monolayers on low-index gold single crystal electrodes. Electrochim. Acta 87, 770–778 (2013).
Murphy, J. N., Cheng, A. K. H., Yu, H.-Z. & Bizzotto, D. On the nature of DNA self-assembled monolayers on Au: measuring surface heterogeneity with electrochemical in situ fluorescence microscopy. J. Am. Chem. Soc. 131, 4042–4050 (2009).
Article CAS PubMed Google Scholar
Abi, A. & Ferapontova, E. E. Unmediated by DNA electron transfer in redox-labeled DNA duplexes end-tethered to gold electrodes. J. Am. Chem. Soc. 134, 14499–14507 (2012).
Article CAS PubMed Google Scholar
Farjami, E., Campos, R. & Ferapontova, E. E. Effect of the DNA end of tethering to electrodes on electron transfer in methylene blue-labeled DNA duplexes. Langmuir 28, 16218–16226 (2012).
Article CAS PubMed Google Scholar
Randriamahazaka, H. & Ghilane, J. Electrografting and controlled surface functionalization of carbon based surfaces for electroanalysis. Electroanalysis 28, 13–26 (2016).
Whang, D. R. Immobilization of molecular catalysts for artificial photosynthesis. Nano Converg. 7, 37 (2020).
Article CAS PubMed PubMed Central Google Scholar
Downard, A. J. Electrochemically assisted covalent modification of carbon electrodes. Electroanalysis 12, 1085–1096 (2000).
Das, M. R., Wang, M., Szunerits, S., Gengembre, L. & Boukherroub, R. Clicking ferrocene groups to boron-doped diamond electrodes. Chem. Commun. https://doi.org/10.1039/b901481k (2009).
Das, A. K., Engelhard, M. H., Liu, F., Bullock, R. M. & Roberts, J. A. S. The electrode as organolithium reagent: catalyst-free covalent attachment of electrochemically active species to an azide-terminated glassy carbon electrode surface. Inorg. Chem. 52, 13674–13684 (2013).
留言 (0)